Discrete choice experiment (DCE) to quantify the influence of trial features on the decision to participate in cystic fibrosis (CF) clinical trials

Author:

Dobra Rebecca AnneORCID,Boeri Marco,Elborn Stuart,Kee Frank,Madge Susan,Davies Jane C

Abstract

IntroductionEngaging people with cystic fibrosis (CF) in clinical trials is critical to improving outcomes for this fatal disease. Following extensive exploration of engagement in CF trials we believe six key concepts require a quantitative understanding of their influence in the current CF trials landscape including how controversial issues like placebos, washouts, stipend provision and location of trial visits are viewed by the CF community and how these might be modified depending on the type of medicine being investigated and the mechanism of access to the drug on trial completion.Methods and analysisWe have designed and will administer an online discrete choice experiment to elicit and quantify preferences of people with CF for these trials’ attributes and estimate the relative importance of an attribute when choosing to participate in a trial. The cross-sectional data generated will be explored using conditional multinomial logit model. Mixed logit models such as the random-parameters logit and a latent class models will be used to explore preference heterogeneity. To determine the relative importance of an attribute, the difference between the attribute level with the highest preference weight and the level with the lowest preference weight will be calculated.Ethics and disseminationImperial College London Joint Research Compliance Office has granted ethical approval for this study. Patient consent will be sought following full explanation. No identifying information will be collected. Dissemination will be via international conferences, peer-review publication and patient accessible forums. Major CF trials networks have agreed to incorporate our findings into their review process, meaning our results can realistically influence and optimise CF trial delivery.PROSPERO registration numberCRD42020184886.

Publisher

BMJ

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3