Learning from electronic prescribing errors: a mixed methods study of junior doctors’ perceptions of training and individualised feedback data

Author:

Chu AnnORCID,Kumar Arika,Depoorter Geraldine,Franklin Bryony Dean,McLeod MonseyORCID

Abstract

ObjectivesTo explore the views of junior doctors towards (1) electronic prescribing (EP) training and feedback, (2) readiness for receiving individualised feedback data about EP errors and (3) preferences for receiving and learning from EP feedback.DesignExplanatory sequential mixed methods study comprising quantitative survey (phase 1), followed by interviews and focus group discussions (phase 2).SettingThree acute hospitals of a large English National Health Service organisation.Participants25 of 89 foundation year 1 and 2 doctors completed the phase 1 survey; 5 participated in semi-structured interviews and 7 in a focus group in phase 2.ResultsFoundation doctors in this mixed methods study reported that current feedback provision on EP errors was lacking or informal, and that existing EP training and resources were underused. They believed feedback about prescribing errors to be important and were keen to receive real-time, individualised EP feedback data. Feedback needed to be in manageable amounts, motivational and clearly signposting how to learn or improve. Participants wanted feedback and better training on the EP system to prevent repeating errors. In addition to individualised EP error data, they were positive about learning from general prescribing errors and aggregated EP data. However, there was a lack of consensus about how best to learn from statistical data. Potential limitations identified by participants included concern about how the data would be collected and whether it would be truly reflective of their performance.ConclusionsJunior doctors would value feedback on their prescribing, and are keen to learn from EP errors, develop their clinical prescribing skills and use the EP interface effectively. We identified preferences for EP technology to enable provision of real-time data in combination with feedback to support learning and potentially reduce prescribing errors.

Funder

National Institute for Health Research

Publisher

BMJ

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3