Generating high-quality data abstractions from scanned clinical records: text-mining-assisted extraction of endometrial carcinoma pathology features as proof of principle

Author:

Nguyen AnthonyORCID,O'Dwyer John,Vu Thanh,Webb Penelope M,Johnatty Sharon E,Spurdle Amanda B

Abstract

ObjectiveMedical research studies often rely on the manual collection of data from scanned typewritten clinical records, which can be laborious, time consuming and error prone because of the need to review individual clinical records. We aimed to use text mining to assist with the extraction of clinical features from complex text-based scanned pathology records for medical research studies.DesignText mining performance was measured by extracting and annotating three distinct pathological features from scanned photocopies of endometrial carcinoma clinical pathology reports, and comparing results to manually abstracted terms. Inclusion and exclusion keyword trigger terms to capture leiomyomas, endometriosis and adenomyosis were provided based on expert knowledge. Terms were expanded with character variations based on common optical character recognition (OCR) error patterns as well as negation phrases found in sample reports. The approach was evaluated on an unseen test set of 1293 scanned pathology reports originating from laboratories across Australia.SettingScanned typewritten pathology reports for women aged 18–79 years with newly diagnosed endometrial cancer (2005–2007) in Australia.ResultsHigh concordance with final abstracted codes was observed for identifying the presence of three pathology features (94%–98% F-measure). The approach was more consistent and reliable than manual abstractions, identifying 3%–14% additional feature instances.ConclusionKeyword trigger-based automation with OCR error correction and negation handling proved not only to be rapid and convenient, but also providing consistent and reliable data abstractions from scanned clinical records. In conjunction with manual review, it can assist in the generation of high-quality data abstractions for medical research studies.

Funder

Cancer Council Queensland

National Health and Medical Research Council

Cancer Australia

Cancer Council Tasmania

Publisher

BMJ

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3