Abstract
ObjectiveMedical research studies often rely on the manual collection of data from scanned typewritten clinical records, which can be laborious, time consuming and error prone because of the need to review individual clinical records. We aimed to use text mining to assist with the extraction of clinical features from complex text-based scanned pathology records for medical research studies.DesignText mining performance was measured by extracting and annotating three distinct pathological features from scanned photocopies of endometrial carcinoma clinical pathology reports, and comparing results to manually abstracted terms. Inclusion and exclusion keyword trigger terms to capture leiomyomas, endometriosis and adenomyosis were provided based on expert knowledge. Terms were expanded with character variations based on common optical character recognition (OCR) error patterns as well as negation phrases found in sample reports. The approach was evaluated on an unseen test set of 1293 scanned pathology reports originating from laboratories across Australia.SettingScanned typewritten pathology reports for women aged 18–79 years with newly diagnosed endometrial cancer (2005–2007) in Australia.ResultsHigh concordance with final abstracted codes was observed for identifying the presence of three pathology features (94%–98% F-measure). The approach was more consistent and reliable than manual abstractions, identifying 3%–14% additional feature instances.ConclusionKeyword trigger-based automation with OCR error correction and negation handling proved not only to be rapid and convenient, but also providing consistent and reliable data abstractions from scanned clinical records. In conjunction with manual review, it can assist in the generation of high-quality data abstractions for medical research studies.
Funder
Cancer Council Queensland
National Health and Medical Research Council
Cancer Australia
Cancer Council Tasmania
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献