Abstract
ObjectivesBeing able to predict which patients with COVID-19 are going to deteriorate is important to help identify patients for clinical and research practice. Clinical prediction models play a critical role in this process, but current models are of limited value because they are typically restricted to baseline predictors and do not always use contemporary statistical methods. We sought to explore the benefits of incorporating dynamic changes in routinely measured biomarkers, non-linear effects and applying ‘state-of-the-art’ statistical methods in the development of a prognostic model to predict death in hospitalised patients with COVID-19.DesignThe data were analysed from admissions with COVID-19 to three hospital sites. Exploratory data analysis included a graphical approach to partial correlations. Dynamic biomarkers were considered up to 5 days following admission rather than depending solely on baseline or single time-point data. Marked departures from linear effects of covariates were identified by employing smoothing splines within a generalised additive modelling framework.Setting3 secondary and tertiary level centres in Greater Manchester, the UK.Participants392 hospitalised patients with a diagnosis of COVID-19.Results392 patients with a COVID-19 diagnosis were identified. Area under the receiver operating characteristic curve increased from 0.73 using admission data alone to 0.75 when also considering results of baseline blood samples and to 0.83 when considering dynamic values of routinely collected markers. There was clear non-linearity in the association of age with patient outcome.ConclusionsThis study shows that clinical prediction models to predict death in hospitalised patients with COVID-19 can be improved by taking into account both non-linear effects in covariates such as age and dynamic changes in values of biomarkers.
Funder
Medical Research Council
Efficacy and Mechanism Evaluation Programme
Reference19 articles.
1. Fair Allocation of Scarce Medical Resources in the Time of Covid-19
2. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal
3. WHO . Laboratory testing for coronavirus disease(COVID-19) in suspected human cases, 2020.
4. International Severe Acute Respiratory and emerging Infection Consortium . Available: https://isaric.tghn.org [Accessed 28 May 2020].
5. Sparse inverse covariance estimation with the graphical lasso
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献