Deep learning-based facial image analysis in medical research: a systematic review protocol

Author:

Su ZhaohuiORCID,Liang Bin,Shi Feng,Gelfond J,Šegalo SabinaORCID,Wang Jing,Jia Peng,Hao Xiaoning

Abstract

IntroductionDeep learning techniques are gaining momentum in medical research. Evidence shows that deep learning has advantages over humans in image identification and classification, such as facial image analysis in detecting people’s medical conditions. While positive findings are available, little is known about the state-of-the-art of deep learning-based facial image analysis in the medical context. For the consideration of patients’ welfare and the development of the practice, a timely understanding of the challenges and opportunities faced by research on deep-learning-based facial image analysis is needed. To address this gap, we aim to conduct a systematic review to identify the characteristics and effects of deep learning-based facial image analysis in medical research. Insights gained from this systematic review will provide a much-needed understanding of the characteristics, challenges, as well as opportunities in deep learning-based facial image analysis applied in the contexts of disease detection, diagnosis and prognosis.MethodsDatabases including PubMed, PsycINFO, CINAHL, IEEEXplore and Scopus will be searched for relevant studies published in English in September, 2021. Titles, abstracts and full-text articles will be screened to identify eligible articles. A manual search of the reference lists of the included articles will also be conducted. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework was adopted to guide the systematic review process. Two reviewers will independently examine the citations and select studies for inclusion. Discrepancies will be resolved by group discussions till a consensus is reached. Data will be extracted based on the research objective and selection criteria adopted in this study.Ethics and disseminationAs the study is a protocol for a systematic review, ethical approval is not required. The study findings will be disseminated via peer-reviewed publications and conference presentations.PROSPERO registration numberCRD42020196473.

Publisher

BMJ

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3