Evaluating the utility of digital phenotyping to predict health outcomes in schizophrenia: protocol for the HOPE-S observational study

Author:

Abdul Rashid Nur AmirahORCID,Martanto Wijaya,Yang Zixu,Wang Xuancong,Heaukulani Creighton,Vouk Nikola,Buddhika Thisum,Wei Yuan,Verma Swapna,Tang Charmaine,Morris Robert J T,Lee JimmyORCID

Abstract

IntroductionThe course of schizophrenia illness is characterised by recurrent relapses which are associated with adverse clinical outcomes such as treatment-resistance, functional and cognitive decline. Early identification is essential and relapse prevention remains a primary treatment goal for long-term management of schizophrenia. With the ubiquity of devices such as smartphones, objective digital biomarkers can be harnessed and may offer alternative means for symptom monitoring and relapse prediction. The acceptability of digital sensors (smartphone and wrist-wearable device) and the association between the captured digital data with clinical and health outcomes in individuals with schizophrenia will be examined.Methods and analysisIn this study, we aim to recruit 100 individuals with schizophrenia spectrum disorders who are recently discharged from the Institute of Mental Health (IMH), Singapore. Participants are followed up for 6 months, where digital, clinical, cognitive and functioning data are collected while health utilisation data are obtained at the 6 month and 1 year timepoint from study enrolment. Associations between digital, clinical and health outcomes data will be examined. A data-driven machine learning approach will be used to develop prediction algorithms to detect clinically significant outcomes. Study findings will inform the design, data collection procedures and protocol of future interventional randomised controlled trial, testing the effectiveness of digital phenotyping in clinical management of individuals with schizophrenia spectrum disorders.Ethics and disseminationEthics approval has been granted by the National Healthcare Group (NHG) Domain Specific Review Board (DSRB Reference no.: 2019/00720). The results will be published in peer-reviewed journals and presented at conferences.Trial registration numberNCT04230590.

Funder

Ministry of Health Office for Healthcare Transformation Fund

Ministry of Health National Medical Research Council Clinician Scientist Award

Ministry of Health National Medical Research Council Centre Grant

Publisher

BMJ

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3