Artificial intelligence mobile health platform for early detection of COVID-19 in quarantine subjects using a wearable biosensor: protocol for a randomised controlled trial

Author:

Wong Chun KaORCID,Ho Deborah Tip Yin,Tam Anthony Raymond,Zhou MiORCID,LAU Yuk Ming,Tang Milky Oi Yan,Tong Raymond Cheuk Fung,Rajput Kuldeep Singh,Chen Gengbo,Chan Soon Chee,SIU Chung Wah,Hung Ivan Fan Ngai

Abstract

IntroductionThere is an outbreak of COVID-19 worldwide. As there is no effective therapy or vaccine yet, rigorous implementation of traditional public health measures such as isolation and quarantine remains the most effective tool to control the outbreak. When an asymptomatic individual with COVID-19 exposure is being quarantined, it is necessary to perform temperature and symptom surveillance. As such surveillance is intermittent in nature and highly dependent on self-discipline, it has limited effectiveness. Advances in biosensor technologies made it possible to continuously monitor physiological parameters using wearable biosensors with a variety of form factors.ObjectiveTo explore the potential of using wearable biosensors to continuously monitor multidimensional physiological parameters for early detection of COVID-19 clinical progression.MethodThis randomised controlled open-labelled trial will involve 200–1000 asymptomatic subjects with close COVID-19 contact under mandatory quarantine at designated facilities in Hong Kong. Subjects will be randomised to receive a remote monitoring strategy (intervention group) or standard strategy (control group) in a 1:1 ratio during the 14 day-quarantine period. In addition to fever and symptom surveillance in the control group, subjects in the intervention group will wear wearable biosensors on their arms to continuously monitor skin temperature, respiratory rate, blood pressure, pulse rate, blood oxygen saturation and daily activities. These physiological parameters will be transferred in real time to a smartphone application called Biovitals Sentinel. These data will then be processed using a cloud-based multivariate physiology analytics engine called Biovitals to detect subtle physiological changes. The results will be displayed on a web-based dashboard for clinicians’ review. The primary outcome is the time to diagnosis of COVID-19.Ethics and disseminationEthical approval has been obtained from institutional review boards at the study sites. Results will be published in peer-reviewed journals.

Publisher

BMJ

Subject

General Medicine

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3