Defining acceptable data collection and reuse standards for queer artificial intelligence research in mental health: protocol for the online PARQAIR-MH Delphi study

Author:

Joyce Dan WORCID,Kormilitzin Andrey,Hamer-Hunt Julia,McKee Kevin RORCID,Tomasev Nenad

Abstract

IntroductionFor artificial intelligence (AI) to help improve mental healthcare, the design of data-driven technologies needs to be fair, safe, and inclusive. Participatory design can play a critical role in empowering marginalised communities to take an active role in constructing research agendas and outputs. Given the unmet needs of the LGBTQI+ (Lesbian, Gay, Bisexual, Transgender, Queer and Intersex) community in mental healthcare, there is a pressing need for participatory research to include a range of diverse queer perspectives on issues of data collection and use (in routine clinical care as well as for research) as well as AI design. Here we propose a protocol for a Delphi consensus process for the development of PARticipatory Queer AI Research for Mental Health (PARQAIR-MH) practices, aimed at informing digital health practices and policy.Methods and analysisThe development of PARQAIR-MH is comprised of four stages. In stage 1, a review of recent literature and fact-finding consultation with stakeholder organisations will be conducted to define a terms-of-reference for stage 2, the Delphi process. Our Delphi process consists of three rounds, where the first two rounds will iterate and identify items to be included in the final Delphi survey for consensus ratings. Stage 3 consists of consensus meetings to review and aggregate the Delphi survey responses, leading to stage 4 where we will produce a reusable toolkit to facilitate participatory development of future bespoke LGBTQI+–adapted data collection, harmonisation, and use for data-driven AI applications specifically in mental healthcare settings.Ethics and disseminationPARQAIR-MH aims to deliver a toolkit that will help to ensure that the specific needs of LGBTQI+ communities are accounted for in mental health applications of data-driven technologies. The study is expected to run from June 2024 through January 2025, with the final outputs delivered in mid-2025. Participants in the Delphi process will be recruited by snowball and opportunistic sampling via professional networks and social media (but not by direct approach to healthcare service users, patients, specific clinical services, or via clinicians’ caseloads). Participants will not be required to share personal narratives and experiences of healthcare or treatment for any condition. Before agreeing to participate, people will be given information about the issues considered to be in-scope for the Delphi (eg, developing best practices and methods for collecting and harmonising sensitive characteristics data; developing guidelines for data use/reuse) alongside specific risks of unintended harm from participating that can be reasonably anticipated. Outputs will be made available in open-access peer-reviewed publications, blogs, social media, and on a dedicated project website for future reuse.

Funder

National Institute of Health and Social Care

Publisher

BMJ

Reference74 articles.

1. Foley J , Woollard J . Digital future of mental healthcare report. 2019. Available: https://topol.hee.nhs.uk/wp-content/uploads/HEE-Topol-Review-Mental-health-paper.pdf

2. Chen RJ , Chen TY , Lipkova J , et al . Algorithm fairness in AI for medicine and healthcare. arXiv 2021:211000603. doi:10.48550/arXiv.2110.00603

3. Dissecting racial bias in an algorithm used to manage the health of populations

4. Race-Free Equations for eGFR: Comparing Effects on CKD Classification

5. The heimdall framework for supporting characterisation of learning health systems;McLachlan;BMJ Health Care Inform,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3