Abstract
IntroductionOutbreaks of vaccine-preventable diseases continue to threaten public health, despite the proven effectiveness of vaccines. Interventions such as vaccination, social distancing and palliative care are usually implemented, either individually or in combination, to control these outbreaks. Mathematical models are often used to assess the impact of these interventions and for supporting outbreak response decision making. The objectives of this systematic review, which covers all human vaccine-preventable diseases, are to determine the relative impact of vaccination compared with other outbreak interventions, and to ascertain the temporal trends in the use of modelling in outbreak response decision making. We will also identify gaps and opportunities for future research through a comparison with the foot-and-mouth disease outbreak response modelling literature, which has good examples of the use of modelling to inform outbreak response intervention decision making.Methods and analysisWe searched on PubMed, Scopus, Web of Science, Google Scholar and some preprint servers from the start of indexing to 15 January 2020. Inclusion: modelling studies, published in English, that use a mechanistic approach to evaluate the impact of an outbreak intervention. Exclusion: reviews, and studies that do not describe or use mechanistic models or do not describe an outbreak. We will extract data from the included studies such as their objectives, model types and composition, and conclusions on the impact of the intervention. We will ascertain the impact of models on outbreak response decision making through visualisation of time trends in the use of the models. We will also present our results in narrative style.Ethics and disseminationThis systematic review will not require any ethics approval since it only involves scientific articles. The review will be disseminated in a peer-reviewed journal and at various conferences fitting its scope.PROSPERO registration numberCRD42020160803.
Funder
South African DSI-NRF Centre of Excellence in Epidemiological Modelling and Analysis