Feasibility interventional study investigating PAIN in neurorehabilitation through wearabLE SensorS (PAINLESS): a study protocol

Author:

Moscato SerenaORCID,Orlandi Silvia,Di Gregorio Francesco,Lullini Giada,Pozzi Stefania,Sabattini Loredana,Chiari Lorenzo,La Porta Fabio

Abstract

IntroductionMillions of people survive injuries to the central or peripheral nervous system for which neurorehabilitation is required. In addition to the physical and cognitive impairments, many neurorehabilitation patients experience pain, often not widely recognised and inadequately treated. This is particularly true for multiple sclerosis (MS) patients, for whom pain is one of the most common symptoms. In clinical practice, pain assessment is usually conducted based on a subjective estimate. This approach can lead to inaccurate evaluations due to the influence of numerous factors, including emotional or cognitive aspects. To date, no objective and simple to use clinical methods allow objective quantification of pain and the diagnostic differentiation between the two main types of pain (nociceptive vs neuropathic). Wearable technologies and artificial intelligence (AI) have the potential to bridge this gap by continuously monitoring patients’ health parameters and extracting meaningful information from them. Therefore, we propose to develop a new automatic AI-powered tool to assess pain and its characteristics during neurorehabilitation treatments using physiological signals collected by wearable sensors.Methods and analysisWe aim to recruit 15 participants suffering from MS undergoing physiotherapy treatment. During the study, participants will wear a wristband for three consecutive days and be monitored before and after their physiotherapy sessions. Measurement of traditionally used pain assessment questionnaires and scales (ie, painDETECT, Doleur Neuropathique 4 Questions, EuroQoL-5-dimension-3-level) and physiological signals (photoplethysmography, electrodermal activity, skin temperature, accelerometer data) will be collected. Relevant parameters from physiological signals will be identified, and AI algorithms will be used to develop automatic classification methods.Ethics and disseminationThe study has been approved by the local Ethical Committee (285-2022-SPER-AUSLBO). Participants are required to provide written informed consent. The results will be disseminated through contributions to international conferences and scientific journals, and they will also be included in a doctoral dissertation.Trial registration numberNCT05747040.

Publisher

BMJ

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Feasibility of a diagnostic differentiation tool for nociceptive and neuropathic pain in a neurorehabilitation population using physiological data from wearable sensors;2023 IEEE EMBS Special Topic Conference on Data Science and Engineering in Healthcare, Medicine and Biology;2023-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3