Abstract
ObjectivesThe aim of this study was to identify, with soft clustering methods, multimorbidity patterns in the electronic health records of a population ≥65 years, and to analyse such patterns in accordance with the different prevalence cut-off points applied. Fuzzy cluster analysis allows individuals to be linked simultaneously to multiple clusters and is more consistent with clinical experience than other approaches frequently found in the literature.DesignA cross-sectional study was conducted based on data from electronic health records.Setting284 primary healthcare centres in Catalonia, Spain (2012).Participants916 619 eligible individuals were included (women: 57.7%).Primary and secondary outcome measuresWe extracted data on demographics, International Classification of Diseases version 10 chronic diagnoses, prescribed drugs and socioeconomic status for patients aged ≥65. Following principal component analysis of categorical and continuous variables for dimensionality reduction, machine learning techniques were applied for the identification of disease clusters in a fuzzy c-means analysis. Sensitivity analyses, with different prevalence cut-off points for chronic diseases, were also conducted. Solutions were evaluated from clinical consistency and significance criteria.ResultsMultimorbidity was present in 93.1%. Eight clusters were identified with a varying number of disease values: nervous and digestive; respiratory, circulatory and nervous; circulatory and digestive; mental, nervous and digestive, female dominant; mental, digestive and blood, female oldest-old dominant; nervous, musculoskeletal and circulatory, female dominant; genitourinary, mental and musculoskeletal, male dominant; and non-specified, youngest-old dominant. Nuclear diseases were identified for each cluster independently of the prevalence cut-off point considered.ConclusionsMultimorbidity patterns were obtained using fuzzy c-means cluster analysis. They are clinically meaningful clusters which support the development of tailored approaches to multimorbidity management and further research.
Funder
European Regional Development Fund
Catalan Government
Carlos III Institute of Health, Ministry of Economy and Competitiveness
Reference40 articles.
1. Defining Comorbidity: Implications for Understanding Health and Health Services
2. Prevalence, determinants and patterns of multimorbidity in primary care: a systematic review of observational studies;PLoS One,2014
3. Multimorbidity in Older Adults
4. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study
5. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the global burden of disease study 2013;The Lancet,2015
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献