Author:
McWilliams Christopher J,Lawson Daniel J,Santos-Rodriguez Raul,Gilchrist Iain D,Champneys Alan,Gould Timothy H,Thomas Mathew JC,Bourdeaux Christopher P
Abstract
ObjectiveThe primary objective is to develop an automated method for detecting patients that are ready for discharge from intensive care.DesignWe used two datasets of routinely collected patient data to test and improve on a set of previously proposed discharge criteria.SettingBristol Royal Infirmary general intensive care unit (GICU).PatientsTwo cohorts derived from historical datasets: 1870 intensive care patients from GICU in Bristol, and 7592 from Medical Information Mart for Intensive Care (MIMIC)-III.ResultsIn both cohorts few successfully discharged patients met all of the discharge criteria. Both a random forest and a logistic classifier, trained using multiple-source cross-validation, demonstrated improved performance over the original criteria and generalised well between the cohorts. The classifiers showed good agreement on which features were most predictive of readiness-for-discharge, and these were generally consistent with clinical experience. By weighting the discharge criteria according to feature importance from the logistic model we showed improved performance over the original criteria, while retaining good interpretability.ConclusionsOur findings indicate the feasibility of the proposed approach to ready-for-discharge classification, which could complement other risk models of specific adverse outcomes in a future decision support system. Avenues for improvement to produce a clinically useful tool are identified.
Funder
Elizabeth Blackwell Institue
Wellcome Trust
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献