Abstract
ObjectivesWe aimed at identifying the important variables for labour induction intervention and assessing the predictive performance of machine learning algorithms.SettingWe analysed the birth registry data from a referral hospital in northern Tanzania. Since July 2000, every birth at this facility has been recorded in a specific database.Participants21 578 deliveries between 2000 and 2015 were included. Deliveries that lacked information regarding the labour induction status were excluded.Primary outcomeDeliveries involving labour induction intervention.ResultsParity, maternal age, body mass index, gestational age and birth weight were all found to be important predictors of labour induction. Boosting method demonstrated the best discriminative performance (area under curve, AUC=0.75: 95% CI (0.73 to 0.76)) while logistic regression presented the least (AUC=0.71: 95% CI (0.70 to 0.73)). Random forest and boosting algorithms showed the highest net-benefits as per the decision curve analysis.ConclusionAll of the machine learning algorithms performed well in predicting the likelihood of labour induction intervention. Further optimisation of these classifiers through hyperparameter tuning may result in an improved performance. Extensive research into the performance of other classifier algorithms is warranted.
Funder
National Key R&D Program of China with grant number
2021 Postgraduate Education Reform and Quality Improvement Project of Henan Province with grant number
Research on CDC-Hospital-Community Trinity Coordinated Prevention and Control System for Major Infectious Diseases, Zhengzhou University 2020 Key Project of Discipline Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献