How to discriminate non-small cell lung cancer (NSCLC) cases from an Italian administrative database? A retrospective, secondary data use study for evaluating a novel algorithm performance

Author:

Balzi William,Roncadori Andrea,Danesi ValentinaORCID,Massa Ilaria,Manunta Silvia,Gentili Nicola,Delmonte Angelo,Crinò Lucio,Altini Mattia

Abstract

ObjectivesTo evaluate an algorithm developed for identifying non-small cell lung cancer (NSCLC) candidates among patients with lung cancer with a diagnosis International Classification of Diseases: ninth revision (ICD-9) 162.x code in administrative databases. Algorithm could then be applied for identifying the NSCLC population in order to assess the appropriateness and quality of care of the NSCLC care pathway.DesignAlgorithm discrimination capacity to select both NSCLC or non-NSCLC was carried out on a sample for which electronic health record (EHR) diagnosis was available. A bivariate frequency distribution and other measures were used to evaluate algorithm’s performances. Associations between possible factors potentially affecting algorithm accuracy were investigated.SettingAdministrative databases used in a specific geographical area of Emilia-Romagna region, Italy.ParticipantsAlgorithm was carried out on patients aged >18 years, with a lung cancer diagnosis from January to December 2017 and resident in Emilia-Romagna region who have been hospitalised at IRST or in one of the hospitals placed in the Forlì-Cesena area and for which EHR diagnosis data were available.Outcome measuresOverall accuracy, positive (PPV) and negative (NPV) predictive values, sensitivity and specificity, positive and negative likelihood ratios and diagnostic OR were calculated.ResultsA total of 430 patients were identified as lung cancer cases based on ICD-9 diagnosis. Focusing on the total incident cases (n=314), the algorithm had an overall accuracy of 82.8% with a sensitivity of 88.8%. The analysis confirmed a high level of PPV (90.2%), but lower specificity (53.7%) and NPV (50%). Higher length of stay seemed to be associated with a correct classification. Hospitalisation regimen and a supply of antiblastic therapy seemed to increase the level of PPV.ConclusionThe algorithm demonstrated a strong validity for identifying NSCLC among patients with lung cancer in hospital administrative databases and can be used to investigate the quality of cancer care for this population.Trial registration numberNCT04676321.

Publisher

BMJ

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3