Abstract
IntroductionLimitations in effective dementia therapies mean that early diagnosis and monitoring are critical for disease management, but current clinical tools are impractical and/or unreliable, and disregard short-term symptom variability. Behavioural biomarkers of cognitive decline, such as speech, sleep and activity patterns, can manifest prodromal pathological changes. They can be continuously measured at home with smart sensing technologies, and permit leveraging of interpersonal interactions for optimising diagnostic and prognostic performance. Here we describe the ContinUous behavioural Biomarkers Of cognitive Impairment (CUBOId) study, which explores the feasibility of multimodal data fusion for in-home monitoring of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). The report focuses on a subset of CUBOId participants who perform a novel speech task, the ‘TV task’, designed to track changes in ecologically valid conversations with disease progression.Methods and analysisCUBOId is a longitudinal observational study. Participants have diagnoses of MCI or AD, and controls are their live-in partners with no such diagnosis. Multimodal activity data were passively acquired from wearables and in-home fixed sensors over timespans of 8–25 months. At two time points participants completed the TV task over 5 days by recording audio of their conversations as they watched a favourite TV programme, with further testing to be completed after removal of the sensor installations. Behavioural testing is supported by neuropsychological assessment for deriving ground truths on cognitive status. Deep learning will be used to generate fused multimodal activity-speech embeddings for optimisation of diagnostic and predictive performance from speech alone.Ethics and disseminationCUBOId was approved by an NHS Research Ethics Committee (Wales REC; ref: 18/WA/0158) and is sponsored by University of Bristol. It is supported by the National Institute for Health Research Clinical Research Network West of England. Results will be reported at conferences and in peer-reviewed scientific journals.
Funder
EPSRC SPHERE Interdisciplinary Research Collaboration
EPSRC Centre for Doctoral Training in Digital Health and Care, University of Bristol
MRC Momentum award
UKRI Turing AI Fellowship
BRACE
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Research hotspots and trends of monitoring technologies in dementia: A Scientometric analysis;2023 4th International Conference on Machine Learning and Computer Application;2023-10-27