Handling of missing data with multiple imputation in observational studies that address causal questions: protocol for a scoping review

Author:

Mainzer RheannaORCID,Moreno-Betancur Margarita,Nguyen CattramORCID,Simpson Julie,Carlin John,Lee Katherine

Abstract

IntroductionObservational studies in health-related research often aim to answer causal questions. Missing data are common in these studies and often occur in multiple variables, such as the exposure, outcome and/or variables used to control for confounding. The standard classification of missing data as missing completely at random, missing at random (MAR) or missing not at random does not allow for a clear assessment of missingness assumptions when missingness arises in more than one variable. This presents challenges for selecting an analytic approach and determining when a sensitivity analysis under plausible alternative missing data assumptions is required. This is particularly pertinent with multiple imputation (MI), which is often justified by assuming data are MAR. The objective of this scoping review is to examine the use of MI in observational studies that address causal questions, with a focus on if and how (a) missingness assumptions are expressed and assessed, (b) missingness assumptions are used to justify the choice of a complete case analysis and/or MI for handling missing data and (c) sensitivity analyses under alternative plausible assumptions about the missingness mechanism are conducted.Methods and analysisWe will review observational studies that aim to answer causal questions and use MI, published between January 2019 and December 2021 in five top general epidemiology journals. Studies will be identified using a full text search for the term ‘multiple imputation’ and then assessed for eligibility. Information extracted will include details about the study characteristics, missing data, missingness assumptions and MI implementation. Data will be summarised using descriptive statistics.Ethics and disseminationEthics approval is not required for this review because data will be collected only from published studies. The results will be disseminated through a peer reviewed publication and conference presentations.Trial registration numberThis protocol is registered on figshare (https://doi.org/10.6084/m9.figshare.20010497.v1).

Funder

National Health and Medical Research Council

Publisher

BMJ

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3