Head-to-head comparison of 14 prediction models for postoperative delirium in elderly non-ICU patients: an external validation study

Author:

Wong Chung KwanORCID,van Munster Barbara C,Hatseras Athanasios,Huis in 't Veld Else,van Leeuwen Barbara L,de Rooij Sophia E,Pleijhuis Rick G

Abstract

ObjectivesDelirium is associated with increased morbidity, mortality, prolonged hospitalisation and increased healthcare costs. The number of clinical prediction models (CPM) to predict postoperative delirium has increased exponentially. Our goal is to perform a head-to-head comparison of CPMs predicting postoperative delirium in non-intensive care unit (non-ICU) elderly patients to identify the best performing models.SettingSingle-site university hospital.DesignSecondary analysis of prospective cohort study.Participants and inclusionCPMs published within the timeframe of 1 January 1990 to 1 May 2020 were checked for eligibility (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). For the time period of 1 January 1990 to 1 January 2017, included CPMs were identified in systematic reviews based on prespecified inclusion and exclusion criteria. An extended literature search for original studies was performed independently by two authors, including CPMs published between 1 January 2017 and 1 May 2020. External validation was performed using a surgical cohort consisting of 292 elderly non-ICU patients.Primary outcome measuresDiscrimination, calibration and clinical usefulness.Results14 CPMs were eligible for analysis out of 366 full texts reviewed. External validation was previously published for 8/14 (57%) CPMs. C-indices ranged from 0.52 to 0.74, intercepts from −0.02 to 0.34, slopes from −0.74 to 1.96 and scaled Brier from −1.29 to 0.088. Based on predefined criteria, the two best performing models were those of Daiet al(c-index: 0.739; (95% CI: 0.664 to 0.813); intercept: −0.018; slope: 1.96; scaled Brier: 0.049) and Litakeret al(c-index: 0.706 (95% CI: 0.590 to 0.823); intercept: −0.015; slope: 0.995; scaled Brier: 0.088). For the remaining CPMs, model discrimination was considered poor with corresponding c-indices <0.70.ConclusionOur head-to-head analysis identified 2 out of 14 CPMs as best-performing models with a fair discrimination and acceptable calibration. Based on our findings, these models might assist physicians in postoperative delirium risk estimation and patient selection for preventive measures.

Publisher

BMJ

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3