A new and automated risk prediction of coronary artery disease using clinical endpoints and medical imaging-derived patient-specific insights: protocol for the retrospective GeoCAD cohort study

Author:

Adikari DonaORCID,Gharleghi Ramtin,Zhang Shisheng,Jorm Louisa,Sowmya Arcot,Moses Daniel,Ooi Sze-Yuan,Beier Susann

Abstract

IntroductionCoronary artery disease (CAD) is the leading cause of death worldwide. More than a quarter of cardiovascular events are unexplained by current absolute cardiovascular disease risk calculators, and individuals without clinical risk factors have been shown to have worse outcomes. The ‘anatomy of risk’ hypothesis recognises that adverse anatomical features of coronary arteries enhance atherogenic haemodynamics, which in turn mediate the localisation and progression of plaques. We propose a new risk prediction method predicated on CT coronary angiography (CTCA) data and state-of-the-art machine learning methods based on a better understanding of anatomical risk for CAD. This may open new pathways in the early implementation of personalised preventive therapies in susceptible individuals as a potential key in addressing the growing burden of CAD.Methods and analysisGeoCAD is a retrospective cohort study in 1000 adult patients who have undergone CTCA for investigation of suspected CAD. It is a proof-of-concept study to test the hypothesis that advanced image-derived patient-specific data can accurately predict long-term cardiovascular events. The objectives are to (1) profile CTCA images with respect to variations in anatomical shape and associated haemodynamic risk expressing, at least in part, an individual’s CAD risk, (2) develop a machine-learning algorithm for the rapid assessment of anatomical risk directly from unprocessed CTCA images and (3) to build a novel CAD risk model combining traditional risk factors with these novel anatomical biomarkers to provide a higher accuracy CAD risk prediction tool.Ethics and disseminationThe study protocol has been approved by the St Vincent’s Hospital Human Research Ethics Committee, Sydney—2020/ETH02127 and the NSW Population and Health Service Research Ethics Committee—2021/ETH00990. The project outcomes will be published in peer-reviewed and biomedical journals, scientific conferences and as a higher degree research thesis.

Funder

Australian Government research training program scholarship

National Health and Medical Research Council

NSW Cardiovascular Research Capacity Early-Mid Career (EMC) Researcher Grant

Publisher

BMJ

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3