Abstract
ObjectivesMalaria is a vector-borne disease that remains a serious public health problem due to its climatic sensitivity. Accurate prediction of malaria re-emergence is very important in taking corresponding effective measures. This study aims to investigate the impact of climatic factors on the re-emergence of malaria in mainland China.DesignA modelling study.Setting and participantsMonthly malaria cases for four Plasmodium species (P. falciparum, P. malariae, P. vivax and other Plasmodium) and monthly climate data were collected for 31 provinces; malaria cases from 2004 to 2016 were obtained from the Chinese centre for disease control and prevention and climate parameters from China meteorological data service centre. We conducted analyses at the aggregate level, and there was no involvement of confidential information.Primary and secondary outcome measuresThe long short-term memory sequence-to-sequence (LSTMSeq2Seq) deep neural network model was used to predict the re-emergence of malaria cases from 2004 to 2016, based on the influence of climatic factors. We trained and tested the extreme gradient boosting (XGBoost), gated recurrent unit, LSTM, LSTMSeq2Seq models using monthly malaria cases and corresponding meteorological data in 31 provinces of China. Then we compared the predictive performance of models using root mean squared error (RMSE) and mean absolute error evaluation measures.ResultsThe proposed LSTMSeq2Seq model reduced the mean RMSE of the predictions by 19.05% to 33.93%, 18.4% to 33.59%, 17.6% to 26.67% and 13.28% to 21.34%, for P. falciparum, P. vivax, P. malariae, and other plasmodia, respectively, as compared with other candidate models. The LSTMSeq2Seq model achieved an average prediction accuracy of 87.3%.ConclusionsThe LSTMSeq2Seq model significantly improved the prediction of malaria re-emergence based on the influence of climatic factors. Therefore, the LSTMSeq2Seq model can be effectively applied in the malaria re-emergence prediction.
Funder
Natural Science Foundation
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献