Author:
Madrigal Irene,Alvarez-Mora Maria Isabel,Karlberg Olof,Rodríguez-Revenga Laia,Elurbe Dei M,Rabionet Raquel,Mur Antonio,Pie Juan,Ballesta Francisca,Sauer Sascha,Syvänen Ann-Christine,Milà Montserrat
Abstract
AimsThe causes of intellectual disability, which affects 1%–3% of the general population, are highly heterogeneous and the genetic defect remains unknown in around 40% of patients. The application of next-generation sequencing is changing the nature of biomedical diagnosis. This technology has quickly become the method of choice for searching for pathogenic mutations in rare uncharacterised genetic diseases.MethodsWhole-exome sequencing was applied to a series of families affected with intellectual disability in order to identify variants underlying disease phenotypes.ResultsWe present data of three families in which we identified the disease-causing mutations and which benefited from receiving a clinical diagnosis: Cornelia de Lange, Cohen syndrome and Dent-2 disease. The genetic heterogeneity and the variability in clinical presentation of these disorders could explain why these patients are difficult to diagnose.ConclusionsThe accessibility to next-generation sequencing allows clinicians to save much time and cost in identifying the aetiology of rare diseases. The presented cases are excellent examples that demonstrate the efficacy of next-generation sequencing in rare disease diagnosis.
Subject
General Medicine,Pathology and Forensic Medicine
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献