Abstract
BackgroundDigital pathology (DP) has the potential to fundamentally change the way that histopathology is practised, by streamlining the workflow, increasing efficiency, improving diagnostic accuracy and facilitating the platform for implementation of artificial intelligence–based computer-assisted diagnostics. Although the barriers to wider adoption of DP have been multifactorial, limited evidence of reliability has been a significant contributor. A meta-analysis to demonstrate the combined accuracy and reliability of DP is still lacking in the literature.ObjectivesWe aimed to review the published literature on the diagnostic use of DP and to synthesise a statistically pooled evidence on safety and reliability of DP for routine diagnosis (primary and secondary) in the context of validation process.MethodsA comprehensive literature search was conducted through PubMed, Medline, EMBASE, Cochrane Library and Google Scholar for studies published between 2013 and August 2019. The search protocol identified all studies comparing DP with light microscopy (LM) reporting for diagnostic purposes, predominantly including H&E-stained slides. Random-effects meta-analysis was used to pool evidence from the studies.ResultsTwenty-five studies were deemed eligible to be included in the review which examined a total of 10 410 histology samples (average sample size 176). For overall concordance (clinical concordance), the agreement percentage was 98.3% (95% CI 97.4 to 98.9) across 24 studies. A total of 546 major discordances were reported across 25 studies. Over half (57%) of these were related to assessment of nuclear atypia, grading of dysplasia and malignancy. These were followed by challenging diagnoses (26%) and identification of small objects (16%).ConclusionThe results of this meta-analysis indicate equivalent performance of DP in comparison with LM for routine diagnosis. Furthermore, the results provide valuable information concerning the areas of diagnostic discrepancy which may warrant particular attention in the transition to DP.
Funder
Health Technology Assessment Programme
Innovate UK
Subject
General Medicine,Pathology and Forensic Medicine
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献