Immunoinformatic approach to assess SARS-CoV-2 protein S epitopes recognised by the most frequent MHC-I alleles in the Brazilian population

Author:

Moura Ronald Rodrigues deORCID,Agrelli Almerinda,Santos-Silva Carlos André,Silva Natália,Assunção Bruno Rodrigo,Brandão Lucas,Benko-Iseppon Ana Maria,Crovella Sergio

Abstract

AimsBrazil is nowadays one of the epicentres of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic and new therapies are needed to face it. In the context of specific immune response against the virus, a correlation between Major Histocompatibility Complex Class I (MHC-I) and the severity of the disease in patients with COVID-19 has been suggested. Aiming at better understanding the biology of the infection and the immune response against the virus in the Brazilian population, we analysed SARS-CoV-2 protein S peptides in order to identify epitopes able to elicit an immune response mediated by the most frequent MHC-I alleles using in silico methods.MethodsOur analyses consisted in searching for the most frequent Human Leukocyte Antigen (HLA)-A, HLA-B and HLA-C alleles in the Brazilian population, excluding the genetic isolates; then, we performed: molecular modelling for unsolved structures, MHC-I binding affinity and antigenicity prediction, peptide docking and molecular dynamics of the best fitted MHC-I/protein S complexes.ResultsWe identified 24 immunogenic epitopes in the SARS-CoV-2 protein S that could interact with 17 different MHC-I alleles (namely, HLA-A*01:01; HLA-A*02:01; HLA-A*11:01; HLA-A*24:02; HLA-A*68:01; HLA-A*23:01; HLA-A*26:01; HLA-A*30:02; HLA-A*31:01; HLA-B*07:02; HLA-B*51:01; HLA-B*35:01; HLA-B*44:02; HLA-B*35:03; HLA-C*05:01; HLA-C*07:01 and HLA-C*15:02) in the Brazilian population.ConclusionsBeing aware of the intrinsic limitations of in silico analysis (mainly the differences between the real and the Protein Data Bank (PDB) structure; and accuracy of the methods for simulate proteasome cleavage), we identified 24 epitopes able to interact with 17 MHC-I more frequent alleles in the Brazilian population that could be useful for the development of strategic methods for vaccines against SARS-CoV-2.

Funder

ISE-EMH (Italian-Slovenian Ecosystem for Electronic and Mobile Health) from European Community

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Italian Ministry of Health

Publisher

BMJ

Subject

General Medicine,Pathology and Forensic Medicine

Reference27 articles.

1. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia

2. Real estimates of mortality following COVID-19 infection;Baud;Lancet Infect Dis,2020

3. WHO . COVID 19 public health emergency of international concern (PHEIC), 2020. Available: https://www.who.int/publications/m/item/covid-19-public-health-emergency-of-international-concern-(pheic)-global-research-and-innovation-forum

4. WHO . Coronavirus disease (COVID-2019) situation reports, 2020. Available: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200707-covid-19-sitrep-169.pdf?sfvrsn=c6c69c88_2

5. Data OWI . Coronavirus pandemic (COVID-19) – the data, 2020. Available: https://ourworldindata.org/coronavirus-data?country=BRA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3