Abstract
AimsBrazil is nowadays one of the epicentres of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic and new therapies are needed to face it. In the context of specific immune response against the virus, a correlation between Major Histocompatibility Complex Class I (MHC-I) and the severity of the disease in patients with COVID-19 has been suggested. Aiming at better understanding the biology of the infection and the immune response against the virus in the Brazilian population, we analysed SARS-CoV-2 protein S peptides in order to identify epitopes able to elicit an immune response mediated by the most frequent MHC-I alleles using in silico methods.MethodsOur analyses consisted in searching for the most frequent Human Leukocyte Antigen (HLA)-A, HLA-B and HLA-C alleles in the Brazilian population, excluding the genetic isolates; then, we performed: molecular modelling for unsolved structures, MHC-I binding affinity and antigenicity prediction, peptide docking and molecular dynamics of the best fitted MHC-I/protein S complexes.ResultsWe identified 24 immunogenic epitopes in the SARS-CoV-2 protein S that could interact with 17 different MHC-I alleles (namely, HLA-A*01:01; HLA-A*02:01; HLA-A*11:01; HLA-A*24:02; HLA-A*68:01; HLA-A*23:01; HLA-A*26:01; HLA-A*30:02; HLA-A*31:01; HLA-B*07:02; HLA-B*51:01; HLA-B*35:01; HLA-B*44:02; HLA-B*35:03; HLA-C*05:01; HLA-C*07:01 and HLA-C*15:02) in the Brazilian population.ConclusionsBeing aware of the intrinsic limitations of in silico analysis (mainly the differences between the real and the Protein Data Bank (PDB) structure; and accuracy of the methods for simulate proteasome cleavage), we identified 24 epitopes able to interact with 17 MHC-I more frequent alleles in the Brazilian population that could be useful for the development of strategic methods for vaccines against SARS-CoV-2.
Funder
ISE-EMH (Italian-Slovenian Ecosystem for Electronic and Mobile Health) from European Community
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Italian Ministry of Health
Subject
General Medicine,Pathology and Forensic Medicine
Reference27 articles.
1. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia
2. Real estimates of mortality following COVID-19 infection;Baud;Lancet Infect Dis,2020
3. WHO . COVID 19 public health emergency of international concern (PHEIC), 2020. Available: https://www.who.int/publications/m/item/covid-19-public-health-emergency-of-international-concern-(pheic)-global-research-and-innovation-forum
4. WHO . Coronavirus disease (COVID-2019) situation reports, 2020. Available: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200707-covid-19-sitrep-169.pdf?sfvrsn=c6c69c88_2
5. Data OWI . Coronavirus pandemic (COVID-19) – the data, 2020. Available: https://ourworldindata.org/coronavirus-data?country=BRA
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献