Microvessel density in breast cancer: the impact of field area on prognostic informativeness

Author:

Kraby Maria RyssdalORCID,Opdahl Signe,Russnes Hege Giercksky,Bofin Anna M

Abstract

AimsTumour microvessel density (MVD) is assessed by counting vessels in the most vascularised tumour region, the vascular hot spot. Current uncertainty regarding the prognostic role of MVD in breast cancer could, in part, be explained by variations in field area size for MVD assessment. We aimed to identify the field area size that provides the most accurate prognostic information in breast carcinoma.MethodsMVD was assessed in 212 tumours. von Willebrand factor positively stained vessels were counted in 10 consecutive visual fields in vascular hotspots. The 10 visual fields in the original counting sequence (MVD-Consecutive) were sorted from highest to lowest vessel count (MVD-Decreasing), and randomly (MVD-Random). After adding counts from one visual field at a time, mean MVD was calculated for each cumulative field area. The prognostic informativeness of each field area and sorting strategy were compared.ResultsMedian MVD decreased with increasing field size for MVD-Decreasing and MVD-Consecutive. A 0.35 mm2 total field area comprising only the highest vessel counts provided the most accurate prognostic information (MVD-Decreasing, HR for breast cancer death 1.06 per 10 vessels/mm2 increase, 95% CI 1.03 to 1.10). MVD-Decreasing gave more accurate prognostic information than MVD-Consecutive and MVD-Random, with decreasing prognostic informativeness with increasing field area.ConclusionsMedian MVD and its prognostic informativeness decreased with increasing field area. Assessing MVD in a carefully selected small field area of 0.35 mm2 provides the most accurate prognostic information. This could facilitate the implementation of MVD assessment in breast cancer.

Publisher

BMJ

Subject

General Medicine,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3