Assessment of mitotic activity in breast cancer: revisited in the digital pathology era

Author:

Ibrahim AsmaaORCID,Lashen Ayat,Toss Michael,Mihai Raluca,Rakha EmadORCID

Abstract

The assessment of cell proliferation is a key morphological feature for diagnosing various pathological lesions and predicting their clinical behaviour. Visual assessment of mitotic figures in routine histological sections remains the gold-standard method to evaluate the proliferative activity and grading of cancer. Despite the apparent simplicity of such a well-established method, visual assessment of mitotic figures in breast cancer (BC) remains a challenging task with low concordance among pathologists which can lead to under or overestimation of tumour grade and hence affects management. Guideline recommendations for counting mitoses in BC have been published to standardise methodology and improve concordance; however, the results remain less satisfactory. Alternative approaches such as the use of the proliferation marker Ki67 have been recommended but these did not show better performance in terms of concordance or prognostic stratification. The advent of whole slide image technology has brought the issue of mitotic counting in BC into the light again with more challenges to develop objective criteria for identifying and scoring mitotic figures in digitalised images. Using reliable and reproducible morphological criteria can provide the highest degree of concordance among pathologists and could even benefit the further application of artificial intelligence (AI) in breast pathology, and this relies mainly on the explicit description of these figures. In this review, we highlight the morphology of mitotic figures and their mimickers, address the current caveats in counting mitoses in breast pathology and describe how to strictly apply the morphological criteria for accurate and reliable histological grade and AI models.

Publisher

BMJ

Subject

General Medicine,Pathology and Forensic Medicine

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3