Reperfusion and cytoprotective agents are a mutually beneficial pair in ischaemic stroke therapy: an overview of pathophysiology, pharmacological targets and candidate drugs focusing on excitotoxicity and free radical

Author:

Xu Xiumei,Chen Mingyu,Zhu DongyaORCID

Abstract

Stroke is the second-leading cause of death and the leading cause of disability in much of the world. In particular, China faces the greatest challenge from stroke, since the population is aged quickly. In decades of clinical trials, no neuroprotectant has had reproducible efficacy on primary clinical end points, because reperfusion is probably a necessity for neuroprotection to be clinically beneficial. Fortunately, the success of thrombolysis and endovascular thrombectomy has taken us into a reperfusion era of acute ischaemic stroke (AIS) therapy. Brain cytoprotective agents can prevent detrimental effects of ischaemia, and therefore ‘freeze’ ischaemic penumbra before reperfusion, extend the time window for reperfusion therapy. Because reperfusion often leads to reperfusion injury, including haemorrhagic transformation, brain oedema, infarct progression and neurological worsening, cytoprotective agents will enhance the efficacy and safety of reperfusion therapy by preventing or reducing reperfusion injuries. Therefore, reperfusion and cytoprotective agents are a mutually beneficial pair in AIS therapy. In this review, we outline critical pathophysiological events causing cell death within the penumbra after ischaemia or ischaemia/reperfusion in the acute phase of AIS, focusing on excitotoxicity and free radicals. We discuss key pharmacological targets for cytoprotective therapy and evaluate the recent advances of cytoprotective agents going through clinical trials, highlighting multitarget cytoprotective agents that intervene at multiple levels of the ischaemic and reperfusion cascade.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

BMJ

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3