Enhanced liver X receptor signalling reduces brain injury and promotes tissue regeneration following experimental intracerebral haemorrhage: roles of microglia/macrophages

Author:

Zhang RuiyiORCID,Dong Yifei,Liu Yang,Moezzi Dorsa,Ghorbani Samira,Mirzaei Reza,Lozinski Brian M,Dunn Jeff F,Yong V Wee,Xue MengzhouORCID

Abstract

BackgroundInflammation-exacerbated secondary brain injury and limited tissue regeneration are barriers to favourable prognosis after intracerebral haemorrhage (ICH). As a regulator of inflammation and lipid metabolism, Liver X receptor (LXR) has the potential to alter microglia/macrophage (M/M) phenotype, and assist tissue repair by promoting cholesterol efflux and recycling from phagocytes. To support potential clinical translation, the benefits of enhanced LXR signalling are examined in experimental ICH.MethodsCollagenase-induced ICH mice were treated with the LXR agonist GW3965 or vehicle. Behavioural tests were conducted at multiple time points. Lesion and haematoma volume, and other brain parameters were assessed using multimodal MRI with T2-weighted, diffusion tensor imaging and dynamic contrast-enhanced MRI sequences. The fixed brain cryosections were stained and confocal microscopy was applied to detect LXR downstream genes, M/M phenotype, lipid/cholesterol-laden phagocytes, oligodendrocyte lineage cells and neural stem cells. Western blot and real-time qPCR were also used. CX3CR1CreER: Rosa26iDTRmice were employed for M/M-depletion experiments.ResultsGW3965 treatment reduced lesion volume and white matter injury, and promoted haematoma clearance. Treated mice upregulated LXR downstream genes including ABCA1 and Apolipoprotein E, and had reduced density of M/M that apparently shifted from proinflammatory interleukin-1β+to Arginase1+CD206+regulatory phenotype. Fewer cholesterol crystal or myelin debris-laden phagocytes were observed in GW3965 mice. LXR activation increased the number of Olig2+PDGFRα+precursors and Olig2+CC1+mature oligodendrocytes in perihaematomal regions, and elevated SOX2+or nestin+neural stem cells in lesion and subventricular zone. MRI results supported better lesion recovery by GW3965, and this was corroborated by return to pre-ICH values of functional rotarod activity. The therapeutic effects of GW3965 were abrogated by M/M depletion in CX3CR1CreER: Rosa26iDTRmice.ConclusionsLXR agonism using GW3965 reduced brain injury, promoted beneficial properties of M/M and facilitated tissue repair correspondent with enhanced cholesterol recycling.

Funder

National Natural Science Foundation of China

China Scholarship Council

Canadian Institutes of Health Research

National Key Research and Development Program of China

Publisher

BMJ

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3