PRCP is a promising drug target for intracranial aneurysm rupture supported via multi-omics analysis

Author:

Wu Jinghao,Mei Yunyun,Li XinYu,Yu Wen-Kai,Zhou Zi Han,Yang Yinghao,Niu Pengpeng,Wang YunchaoORCID,Shi Chang-HeORCID,Zhu Hanghang,He Wenjun,Gao Yuan,Xu YumingORCID,Li YushengORCID

Abstract

Background Cerebral aneurysms are life-threatening cerebrovascular disorders. Currently, there are no effective treatments for preventing disease progression. Mendelian randomisation (MR) is widely used to repurify licensed drugs and identify new therapeutic targets. Therefore, this study aims to investigate effective drug targets for preventing the formation and rupture of cerebral aneurysms and analyse their potential mechanisms. Methods We performed a comprehensive study integrating two-sample MR analysis, colocalisation analysis and summary data-based Mendelian randomisation (SMR) to assess the causal effects of blood and brain druggable cis-expression quantitative trait loci (cis-eQTLs) on intracranial aneurysm (IA), unruptured intracranial aneurysm (UIA) and subarachnoid haemorrhage of IA rupture (SAH). Druggable genes were obtained from the study by Chris Finan et al , cis-eQTLs from the eQTLGen and PsychENCODE consortia. Results were validated using proteomic and transcriptomic data. Single-gene functional analyses probed potential mechanisms, culminating in the construction of a drug-gene regulation network. Results Through the MR analysis, we identified four potential drug targets in the blood, including prolylcarboxypeptidase (PRCP), proteasome 20S subunit alpha 4 (PSMA4), LTBP4 and GPR160 for SAH. Furthermore, two potential drug targets (PSMA4 and SLC22A4) were identified for IA and one potential drug target (KL) for UIA after accounting for multiple testing (P(inverse-variance weighted)<8.28e-6). Strong evidence of colocalisation and SMR analysis confirmed the relevance of PSMA4 and PRCP in outcomes. Elevated PRCP circulating proteins correlated with a lower SAH risk. PRCP gene expression was significantly downregulated in the disease cohort. Conclusions This study supports that elevated PRCP gene expression in blood is causally associated with the decreased risk of IA rupture. Conversely, increased PSMA4 expression in the blood is causally related to an increased risk of IA rupture and formation.

Funder

Henan Province medical science and technology research major project

Publisher

BMJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3