Networks of microstructural damage predict disability in multiple sclerosis

Author:

Colato ElisaORCID,Prados Ferran,Stutters Jonathan,Bianchi AlessiaORCID,Narayanan Sridar,Arnold Douglas LORCID,Wheeler-Kingshott Claudia,Barkhof Frederik,Ciccarelli Olga,Chard Declan TORCID,Eshaghi Arman

Abstract

BackgroundNetwork-based measures are emerging MRI markers in multiple sclerosis (MS). We aimed to identify networks of white (WM) and grey matter (GM) damage that predict disability progression and cognitive worsening using data-driven methods.MethodsWe analysed data from 1836 participants with different MS phenotypes (843 in a discovery cohort and 842 in a replication cohort). We calculated standardised T1-weighted/T2-weighted (sT1w/T2w) ratio maps in brain GM and WM, and applied spatial independent component analysis to identify networks of covarying microstructural damage. Clinical outcomes were Expanded Disability Status Scale worsening confirmed at 24 weeks (24-week confirmed disability progression (CDP)) and time to cognitive worsening assessed by the Symbol Digit Modalities Test (SDMT). We used Cox proportional hazard models to calculate predictive value of network measures.ResultsWe identified 8 WM and 7 GM sT1w/T2w networks (of regional covariation in sT1w/T2w measures) in both cohorts. Network loading represents the degree of covariation in regional T1/T2 ratio within a given network. The loading factor in the anterior corona radiata and temporo-parieto-frontal components were associated with higher risks of developing CDP both in the discovery (HR=0.85, p<0.05 and HR=0.83, p<0.05, respectively) and replication cohorts (HR=0.84, p<0.05 and HR=0.80, p<0.005, respectively). The decreasing or increasing loading factor in the arcuate fasciculus, corpus callosum, deep GM, cortico-cerebellar patterns and lesion load were associated with a higher risk of developing SDMT worsening both in the discovery (HR=0.82, p<0.01; HR=0.87, p<0.05; HR=0.75, p<0.001; HR=0.86, p<0.05 and HR=1.27, p<0.0001) and replication cohorts (HR=0.82, p<0.005; HR=0.73, p<0.0001; HR=0.80, p<0.005; HR=0.85, p<0.01 and HR=1.26, p<0.0001).ConclusionsGM and WM networks of microstructural changes predict disability and cognitive worsening in MS. Our approach may be used to identify patients at greater risk of disability worsening and stratify cohorts in treatment trials.

Funder

International Progressive MS Alliance

Publisher

BMJ

Subject

Psychiatry and Mental health,Neurology (clinical),Surgery

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3