Abstract
ObjectiveGut microbiota dysbiosis is closely linked to the pathogenesis of rheumatoid arthritis (RA). We aimed to identify potential probiotic gut microbes that can ameliorate the development of RA.DesignMicrobiota profiling in patients with RA and healthy individuals was investigated via 16S rDNA bacterial gene sequencing and shotgun metagenomics. Collagen-induced arthritic mice and TNF-α transgenic mice were used to evaluate the roles of the gut commensalParabacteroides distasonisin RA. The effects ofP. distasonis-derived microbial metabolites on the differentiation of CD4+T cells and macrophage polarisation were also investigated.ResultsThe relative abundance ofP. distasonisin new-onset patients with RA and patients with RA with history of the disease was downregulated and this decrease was negatively correlated with Disease Activity Score-28 (DAS28). Oral treatment of arthritic mice with liveP. distasonis(LPD) considerably ameliorated RA pathogenesis. LPD-derived lithocholic acid (LCA), deoxycholic acid (DCA), isolithocholic acid (isoLCA) and 3-oxolithocholic acid (3-oxoLCA) had similar and synergistic effects on the treatment of RA. In addition to directly inhibiting the differentiation of Th17 cells, 3-oxoLCA and isoLCA were identified as TGR5 agonists that promoted the M2 polarisation of macrophages. A specific synthetic inhibitor of bile salt hydrolase attenuated the antiarthritic effects of LPD by reducing the production of these four bile acids. The natural product ginsenoside Rg2 exhibited its anti-RA effects by promoting the growth ofP. distasonis.ConclusionsP. distasonisand ginsenoside Rg2 might represent probiotic and prebiotic agents in the treatment of RA.
Funder
Major Research Plan of Natural Science Foundation of the Higher Education Institutions of Jiangsu Province
Nanjing Municipal Health Science and Technology Development Special Fund of Nanjing Municipal Health Commission
high-level introduction of talents and scientific research start-up funds of CPU
Jiangsu Provincial 333 High Levels Talents Cultivation Project
National Natural Science Foundation of China
Jiangsu Provincial Six Talent Peaks Project
Natural Science Foundation of Jiangsu Province
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献