Abstract
ObjectiveChronic HBV/HDV infections are a major cause of liver cancer. Current treatments can only rarely eliminate HBV and HDV. Our previously developed preS1-HDAg immunotherapy could induce neutralising antibodies to HBV in vivo and raise HBV/HDV-specific T-cells. Here, we further investigate if a heterologous prime-boost strategy can circumvent T-cell tolerance and preclude HDV superinfection in vivo.DesignA DNA prime-protein boost strategy was evaluated for immunogenicity in mice and rabbits. Its ability to circumvent T-cell tolerance was assessed in immunocompetent hepatitis B surface antigen (HBsAg)-transgenic mice. Neutralisation of HBV and HDV was evaluated both in vitro and in immunodeficient human-liver chimeric mice upon adoptive transfer.ResultsThe prime-boost strategy elicits robust HBV/HDV-specific T-cells and preS1-antibodies that can effectively prevent HBV and HDV (co-)infection in vitro and in vivo. In a mouse model representing the chronic HBsAg carrier state, active immunisation primes high levels of preS1-antibodies and HDAg-specific T-cells. Moreover, transfer of vaccine-induced antibodies completely protects HBV-infected human-liver chimeric mice from HDV superinfection.ConclusionThe herein described preS1-HDAg immunotherapy is shown to be immunogenic and vaccine-induced antibodies are highly effective at preventing HBV and HDV (super)infection both in vitro and in vivo. Our vaccine can complement current and future therapies for the control of chronic HBV and HDV infection.
Funder
VINNOVA
Stockholm County Council/region Stockholm
Karolinska Institutet
Swedish Research Council
Center for Medical Innovation
Swedish Cancer Society
Excellence of Science Projects
Fonds Wetenschappelijk Onderzoek
Knowledge Foundation
Bijzonder Onderzoeksfonds
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献