HBV infection-induced liver cirrhosis development in dual-humanised mice with human bone mesenchymal stem cell transplantation

Author:

Yuan Lunzhi,Jiang Jing,Liu Xuan,Zhang Yali,Zhang Liang,Xin Jiaojiao,Wu Kun,Li Xiaoling,Cao Jiali,Guo Xueran,Shi Dongyan,Li­ ­Jun,Jiang Longyan,Sun Suwan,Wang Tengyun,Hou Wangheng,Zhang Tianying,Zhu Hua,Zhang Jun,Yuan Quan,Cheng Tong,Li Jun,Xia NingshaoORCID

Abstract

ObjectiveDeveloping a small animal model that accurately delineates the natural history of hepatitis B virus (HBV) infection and immunopathophysiology is necessary to clarify the mechanisms of host-virus interactions and to identify intervention strategies for HBV-related liver diseases. This study aimed to develop an HBV-induced chronic hepatitis and cirrhosis mouse model through transplantation of human bone marrow mesenchymal stem cells (hBMSCs).DesignTransplantation of hBMSCs into Fah-/-Rag2-/-IL-2Rγc-/- SCID (FRGS) mice with fulminant hepatic failure (FHF) induced by hamster-anti-mouse CD95 antibody JO2 generated a liver and immune cell dual-humanised (hBMSC-FRGS) mouse. The generated hBMSC-FRGS mice were subjected to assessments of sustained viremia, specific immune and inflammatory responses and liver pathophysiological injury to characterise the progression of chronic hepatitis and cirrhosis after HBV infection.ResultsThe implantation of hBMSCs rescued FHF mice, as demonstrated by robust proliferation and transdifferentiation of functional human hepatocytes and multiple immune cell lineages, including B cells, T cells, natural killer cells, dendritic cells and macrophages. After HBV infection, the hBMSC-FRGS mice developed sustained viremia and specific immune and inflammatory responses and showed progression to chronic hepatitis and liver cirrhosis at a frequency of 55% after 54 weeks.ConclusionThis new humanised mouse model recapitulates the liver cirrhosis induced by human HBV infection, thus providing research opportunities for understanding viral immune pathophysiology and testing antiviral therapies in vivo.

Funder

National Natural Science Foundation of China

National Science and Technology Major Project of Infectious Diseases

Zhejiang Provincial and State’s Key Project of Research and Development Plan of China

National Science and Technology Major Projects for Major New Drugs Innovation and Development

Scientific Research Foundation of State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics

Publisher

BMJ

Subject

Gastroenterology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3