Abstract
ObjectiveStroma-rich tumours represent a poor prognostic subtype in stage II/III colon cancer (CC), with high relapse rates and limited response to standard adjuvant chemotherapy.DesignTo address the lack of efficacious therapeutic options for patients with stroma-rich CC, we stratified our human tumour cohorts according to stromal content, enabling identification of the biology underpinning relapse and potential therapeutic vulnerabilities specifically within stroma-rich tumours that could be exploited clinically. Following human tumour-based discovery and independent clinical validation, we use a series ofin vitroand stroma-richin vivomodels to test and validate the therapeutic potential of elevating the biology associated with reduced relapse in human tumours.ResultsBy performing our analyses specifically within the stroma-rich/high-fibroblast (HiFi) subtype of CC, we identify and validate the clinical value of a HiFi-specific prognostic signature (HPS), which stratifies tumours based on STAT1-related signalling (High-HPS v Low-HPS=HR 0.093, CI 0.019 to 0.466). Usingin silico, in vitroandin vivomodels, we demonstrate that the HPS is associated with antigen processing and presentation within discrete immune lineages in stroma-rich CC, downstream of double-stranded RNA and viral response signalling. Treatment with the TLR3 agonist poly(I:C) elevated the HPS signalling and antigen processing phenotype acrossin vitroandin vivomodels. In anin vivomodel of stroma-rich CC, poly(I:C) treatment significantly increased systemic cytotoxic T cell activity (p<0.05) and reduced liver metastases (p<0.0002).ConclusionThis study reveals new biological insight that offers a novel therapeutic option to reduce relapse rates in patients with the worst prognosis CC.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献