Neuronal exosome proteins: novel biomarkers for predicting neonatal response to therapeutic hypothermia

Author:

Pineles Beth,Mani Arunmani,Sura Livia,Rossignol Candace,Albayram Mehmet,Weiss Michael David,Goetzl LauraORCID

Abstract

ObjectiveCentral nervous system (CNS) derived exosomes can be purified from peripheral blood and have been used widely in adult neurological disease. Application to neonatal neurological disease deserves investigation in the setting of hypoxic–ischaemic encephalopathy (HIE).DesignObservational cohort.SettingLevel III neonatal intensive care unit.ParticipantsTerm/near-term neonates undergoing therapeutic hypothermia (TH) for HIE.InterventionsBlood samples were collected at 0–6, 12, 24, 48 and 96 hours of life.Main outcomes and measuresCNS exosomes were purified from serum using previously described methods. Biomarker protein levels were quantified using standard ELISA methods and normalised to exosome marker CD-81. The slope of change for biomarker levels was calculated for each time interval. Our primary outcome was MRI basal ganglia/watershed score of ≥3.Results26 subjects were included (umbilical artery pH range 6.6–7.29; 35% seizures). An increasing MRI injury score was significantly associated with decreasing levels of synaptopodin between 0–6 and 12 hours (p=0.03) and increasing levels of lipocalin-2 (NGAL) between 12 and 48 hours (p<0.0001). Neuronal pentraxin was not significant. The negative predictive values for increasing synaptopodin and decreasing NGAL was 70.0% and 90.9%, respectively.Conclusions and relevanceOur results indicate that CNS exosome cargo has the potential to act as biomarkers of the severity of brain injury and response to TH as well as quantify pharmacological response to neuroactive therapeutic/adjuvant agents. Rigorous prospective trials are critical to evaluate potential clinical use of exosome biomarkers.

Funder

Thrasher Fund

Publisher

BMJ

Subject

Obstetrics and Gynecology,General Medicine,Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3