Calculating the need for intensive care beds

Author:

Pearson Gale A,Reynolds Fiona,Stickley John

Abstract

AimPrompted by high refused admission rates, we sought to model demand for our 20 bed paediatric intensive care unit.MethodsWe analysed activity (admissions) and demand (admissions plus refused admissions). The recommended method for calculating the required number of intensive care beds assumes a Poisson distribution based upon the size of the local catchment population, the incidence of intensive care admission and the average length of stay. We compared it to the Monte Carlo method which would also include supra-regional referrals not otherwise accounted for but which, due to their complexity, tend to have a longer stay than average. For the new method we assigned data from randomly selected emergency admissions to the refused admissions. We then compared occupancy scenarios obtained by random sampling from the data with replacement.ResultsThere was an increase in demand for intensive care over time. Therefore, in order to provide an up-to-date model, we restricted the final analysis to data from the two most recent years (2327 admissions and 324 refused admissions). The conventional method suggested 27 beds covers 95% of the year. The Monte Carlo method showed 95% compliance with 34 beds, with seasonal variation quantified as 30 beds needed in the summer and 38 in the winter.ConclusionBoth approaches suggest that the high refused admission rate is due to insufficient capacity. The Monte Carlo analysis is based upon the total workload (including supra-regional referrals) and predicts a greater bed requirement than the current recommended approach.

Publisher

BMJ

Subject

Pediatrics, Perinatology, and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3