JAK1-dependent transphosphorylation of JAK2 limits the antifibrotic effects of selective JAK2 inhibitors on long-term treatment

Author:

Zhang Yun,Liang Ruifang,Chen Chih-Wei,Mallano Tatjana,Dees Clara,Distler Alfiya,Reich Adam,Bergmann Christina,Ramming Andreas,Gelse Kolja,Mielenz Dirk,Distler Oliver,Schett Georg,Distler Jörg H W

Abstract

ObjectivesJanus kinase 2 (JAK2) has recently been described as a novel downstream mediator of the pro-fibrotic effects of transforming growth factor-β. Although JAK2 inhibitors are in clinical use for myelodysplastic syndromes, patients often rapidly develop resistance. Tumour cells can escape the therapeutic effects of selective JAK2 inhibitors by mutation-independent transactivation of JAK2 by JAK1. Here, we used selective JAK2 inhibition as a model to test the hypothesis that chronic treatment may provoke resistance by facilitating non-physiological signalling pathways in fibroblasts.MethodsThe antifibrotic effects of long-term treatment with selective JAK2 inhibitors and reactivation of JAK2 signalling by JAK1-dependent transphosphorylation was analysed in cultured fibroblasts and experimental dermal and pulmonary fibrosis. Combined JAK1/JAK2 inhibition and co-treatment with an HSP90 inhibitor were evaluated as strategies to overcome resistance.ResultsThe antifibrotic effects of selective JAK2 inhibitors on fibroblasts decreased with prolonged treatment as JAK2 signalling was reactivated by JAK1-dependent transphosphorylation of JAK2. This reactivation could be prevented by HSP90 inhibition, which destabilised JAK2 protein, or with combined JAK1/JAK2 inhibitors. Treatment with combined JAK1/JAK2 inhibitors or with JAK2 inhibitors in combination with HSP90 inhibitors was more effective than monotherapy with JAK2 inhibitors in bleomycin-induced pulmonary fibrosis and in adTBR-induced dermal fibrosis.ConclusionFibroblasts can develop resistance to chronic treatment with JAK2 inhibitors by induction of non-physiological JAK1-dependent transactivation of JAK2 and that inhibition of this compensatory signalling pathway, for example, by co-inhibition of JAK1 or HSP90 is important to maintain the antifibrotic effects of JAK2 inhibition with long-term treatment.

Publisher

BMJ

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,Immunology and Allergy,Rheumatology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Les inhibiteurs de JAK en médecine interne;La Revue de Médecine Interne;2024-06

2. Reply;Arthritis & Rheumatology;2024-02-29

3. Potential Rheumatoid Arthritis-Associated Interstitial Lung Disease Treatment and Computational Approach for Future Drug Development;International Journal of Molecular Sciences;2024-02-26

4. Emerging therapeutic targets in systemic sclerosis;Journal of Molecular Medicine;2024-02-22

5. Emerging delivery approaches for targeted pulmonary fibrosis treatment;Advanced Drug Delivery Reviews;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3