Author:
Maier Christiane,Ramming Andreas,Bergmann Christina,Weinkam Rita,Kittan Nicolai,Schett Georg,Distler Jörg H W,Beyer Christian
Abstract
ObjectivesTo investigate the disease-modifying effects of phosphodiesterase 4 (PDE4) inhibition in preclinical models of systemic sclerosis (SSc).MethodsWe studied the effects of PDE4 inhibition in a prevention and a treatment model of bleomycin-induced skin fibrosis, in the topoisomerase mouse model as well as in a model of sclerodermatous chronic graft-versus-host disease. To better understand the mode of action of PDE4 blockade in preclinical models of SSc, we investigated fibrosis-relevant mediators in fibroblasts and macrophages from healthy individuals and patients suffering from diffuse-cutaneous SSc on blockade of PDE4.ResultsSpecific inhibition of PDE4 by rolipram and apremilast had potent antifibrotic effects in bleomycin-induced skin fibrosis models, in the topoisomerase I mouse model and in murine sclerodermatous chronic graft-versus-host disease. Fibroblasts were not the direct targets of the antifibrotic effects of PDE4 blockade. Reduced leucocyte infiltration in lesional skin on PDE4 blockade suggested an immune-mediated mechanism. Further analysis revealed that PDE4 inhibition decreased the differentiation of M2 macrophages and the release of several profibrotic cytokines, resulting in reduced fibroblast activation and collagen release. Within these profibrotic mediators, interleukin-6 appeared to play a central role.ConclusionsPDE4 inhibition reduces inflammatory cell activity and the release of profibrotic cytokines from M2 macrophages, leading to decreased fibroblast activation and collagen release. Importantly, apremilast is already approved for the treatment of psoriasis and psoriatic arthritis. Therefore, PDE4 inhibitors might be further developed as potential antifibrotic therapies for patients with SSc. Our findings suggest that particularly patients with inflammation-driven fibrosis might benefit from PDE4 blockade.
Subject
General Biochemistry, Genetics and Molecular Biology,Immunology,Immunology and Allergy,Rheumatology
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献