Relationship between structural joint damage and urate deposition in gout: a plain radiography and dual-energy CT study

Author:

Dalbeth Nicola,Aati Opetaia,Kalluru Ramanamma,Gamble Gregory D,Horne Anne,Doyle Anthony J,McQueen Fiona M

Abstract

ObjectivesThe aim of this work was to examine the relationship between joint damage and monosodium urate (MSU) crystal deposition in gout.MethodsPlain radiographs and dual-energy CT (DECT) scans of the feet were prospectively obtained from 92 people with tophaceous gout. Subcutaneous tophus count was recorded. The ten metatarsophalangeal joints were scored on plain radiography for Sharp–van der Heijde erosion and joint space narrowing (JSN) scores, and presence of spur, osteophyte, periosteal new bone and sclerosis (920 total joints). DECT scans were analysed for the presence of MSU crystal deposition at the same joints.ResultsDECT MSU crystal deposition was more frequently observed in joints with erosion (OR (95% CI) 8.5 (5.5 to 13.1)), JSN (4.2 (2.7 to 6.7%)), spur (7.9 (4.9 to 12.8)), osteophyte (3.9 (2.5 to 6.0)), periosteal new bone (7.0 (4.0 to 12.2)) and sclerosis (6.9 (4.6 to 10.2)), p<0.0001 for all. A strong linear relationship was observed in the frequency of joints affected by MSU crystals with radiographic erosion score (p<0.0001). The number of joints at each site with MSU crystal deposition correlated with all features of radiographic joint damage (r>0.88, p<0.05 for all). In linear regression models, the relationship between MSU crystal deposition and all radiographic changes except JSN and osteophytes persisted after adjusting for subcutaneous tophus count, serum urate concentration and disease duration.ConclusionsMSU crystals are frequently present in joints affected by radiographic damage in gout. These findings support the concept that MSU crystals interact with articular tissues to influence the development of structural joint damage in this disease.

Publisher

BMJ

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,Immunology and Allergy,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3