Free fatty acids: potential proinflammatory mediators in rheumatic diseases

Author:

Frommer Klaus W,Schäffler Andreas,Rehart Stefan,Lehr Angela,Müller-Ladner Ulf,Neumann Elena

Abstract

ObjectivesDue to their role in inflammatory metabolic diseases, we hypothesised that free fatty acids (FFA) are also involved in inflammatory joint diseases. To test this hypothesis, we analysed the effect of FFA on synovial fibroblasts (SF), human chondrocytes and endothelial cells. We also investigated whether the toll-like receptor 4 (TLR4), which can contribute to driving arthritis, is involved in FFA signalling.MethodsRheumatoid arthritis SF, osteoarthritis SF, psoriatic arthritis SF, human chondrocytes and endothelial cells were stimulated in vitro with different FFA. Immunoassays were used to quantify FFA-induced protein secretion. TLR4 signalling was inhibited extracellularly and intracellularly. Fatty acid translocase (CD36), responsible for transporting long-chain FFA into the cell, was also inhibited.ResultsIn rheumatoid arthritis synovial fibroblasts (RASF), FFA dose-dependently enhanced the secretion of the proinflammatory cytokine IL-6, the chemokines IL-8 and MCP-1, as well as the matrix-degrading enzymes pro-MMP1 and MMP3. The intensity of the response was mainly dependent on the patient rather than on the type of disease. Both saturated and unsaturated FFA showed similar effects on RASF, while responses to the different FFA varied for human chondrocytes and endothelial cells. Extracellular and intracellular TLR4 inhibition as well as fatty acid transport inhibition blocked the palmitic acid-induced IL-6 secretion of RASF.ConclusionsThe data show that FFA are not only metabolic substrates but may also directly contribute to articular inflammation and degradation in inflammatory joint diseases. Moreover, the data suggest that, in RASF, FFA exert their effects via TLR4 and require extracellular and intracellular access to the TLR4 receptor complex.

Publisher

BMJ

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,Immunology and Allergy,Rheumatology

Reference53 articles.

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3