Abstract
ObjectiveThe aim of the study was to investigate the role and regulatory mechanisms of fibroblast-like synoviocytes (FLSs) and their senescence in the progression of osteoarthritis (OA).MethodsSynovial tissues from normal patients and patients with OA were collected. Synovium FLS senescence was analysed by immunofluorescence and western blotting. The role of methyltransferase-like 3 (METTL3) in autophagy regulation was explored using N6-methyladenosine (m6A)-methylated RNA and RNA immunoprecipitation assays. Mice subjected to destabilisation of the medial meniscus (DMM) surgery were intra-articularly injected with or without pAAV9 loaded with small interfering RNA (siRNA) targeting METTL3. Histological analysis was performed to determine cartilage damage.ResultsSenescent FLSs were markedly increased with the progression of OA in patients and mouse models. We determined that impaired autophagy occurred in OA-FLS, resulting in the upregulation of senescence-associated secretory phenotype (SASP). Re-establishment of autophagy reversed the senescent phenotype by suppressing GATA4. Further, we observed for the first time that excessive m6A modification negatively regulated autophagy in OA-FLS. Mechanistically, METTL3-mediated m6A modification decreased the expression of autophagy-related 7, an E-1 enzyme crucial for the formation of autophagosomes, by attenuating its RNA stability. Silencing METTL3 enhanced autophagic flux and inhibited SASP expression in OA-FLS. Intra-articular injection of synovium-targeted METTL3 siRNA suppressed cellular senescence propagation in joints and ameliorated DMM-induced cartilage destruction.ConclusionsOur study revealed the important role of FLS senescence in OA progression. Targeted METTL3 inhibition could alleviate the senescence of FLS and limit OA development in experimental animal models, providing a potential strategy for OA therapy.
Funder
National Key Research
China Postdoctoral Science Foundation
Youth Thousand Talents Program of China
Natural Science Foundation of Jiangsu Province of China
Nanjing University
Research Team Start
National Natural Science Foundation of China
Subject
General Biochemistry, Genetics and Molecular Biology,Immunology,Immunology and Allergy,Rheumatology
Cited by
190 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献