Transcriptome reprogramming and myeloid skewing in haematopoietic stem and progenitor cells in systemic lupus erythematosus

Author:

Grigoriou Maria,Banos Aggelos,Filia Anastasia,Pavlidis Pavlos,Giannouli Stavroula,Karali Vassiliki,Nikolopoulos Dionysis,Pieta Antigone,Bertsias George,Verginis Panayotis,Mitroulis Ioannis,Boumpas Dimitrios TORCID

Abstract

ObjectivesHaematopoietic stem and progenitor cells (HSPCs) are multipotent cells giving rise to both myeloid and lymphoid cell lineages. We reasoned that the aberrancies of immune cells in systemic lupus erythematosus (SLE) could be traced back to HSPCs.MethodsA global gene expression map of bone marrow (BM)-derived HSPCs was completed by RNA sequencing followed by pathway and enrichment analysis. The cell cycle status and apoptosis status of HSPCs were assessed by flow cytometry, while DNA damage was assessed via immunofluorescence.ResultsTranscriptomic analysis of LinSca-1+c-Kit+ haematopoietic progenitors from diseased lupus mice demonstrated a strong myeloid signature with expanded frequencies of common myeloid progenitors (CMPs)—but not of common lymphoid progenitors—reminiscent of a ‘trained immunity’ signature. CMP profiling revealed an intense transcriptome reprogramming with suppression of granulocytic regulators indicative of a differentiation arrest with downregulation trend of major regulators such as Cebpe, Cebpd and Csf3r, and disturbed myelopoiesis. Despite the differentiation arrest, frequencies of BM neutrophils were markedly increased in diseased mice, suggesting an alternative granulopoiesis pathway. In patients with SLE with severe disease, haematopoietic progenitor cells (CD34+) demonstrated enhanced proliferation, cell differentiation and transcriptional activation of cytokines and chemokines that drive differentiation towards myelopoiesis, thus mirroring the murine data.ConclusionsAberrancies of immune cells in SLE can be traced back to the BM HSPCs. Priming of HSPCs and aberrant regulation of myelopoiesis may contribute to inflammation and risk of flare.Trial registration number4948/19-07-2016.

Funder

H2020 European Research Council

Foundation for Research in Rheumatology

H2020 Research Infrastructures

European Social Fund

Publisher

BMJ

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,Immunology and Allergy,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3