Lupus-associated atypical memory B cells are mTORC1-hyperactivated and functionally dysregulated

Author:

Wu Chunmei,Fu Qiong,Guo Qiang,Chen Sheng,Goswami Shyamal,Sun Shuhui,Li Teng,Cao Xingjian,Chu Fuying,Chen Zechuan,Liu Mei,Liu Yuanhua,Fu Ting,Hao Pei,Hao Yi,Shen Nan,Bao Chunde,Zhang XiaomingORCID

Abstract

ObjectivesA population of atypical memory B cells (AtMs) are greatly expanded in patients with active lupus, but their generation and pathophysiological roles are poorly defined. The aim of this study was to comprehensively characterise lupus AtMs with a purpose to identify therapeutic clues to target this B cell population in lupus.MethodsPeripheral B cell subsets were measured by flow cytometry. Sorting-purified B cell subsets were subject to RNA sequencing and functional studies. Plasma cytokines and secreted immunoglobulins were detected by Luminex or ELISA. In situ renal B cells were detected by multiplexed immunohistochemistry.ResultsCD24CD20hi AtMs were strongly increased in two Chinese cohorts of patients with treatment-naïve lupus. Gene expression profile indicated that B cell signalling and activation, lipid/saccharide metabolism and endocytosis pathways were abnormally upregulated in lupus AtMs. In addition, the mammalian target of rapamycin complex 1 (mTORC1) pathway was remarkably activated in lupus AtMs, and blocking mTORC1 signalling by rapamycin abolished the generation of T-bet+ B cells and terminal differentiation of lupus AtMs. Furthermore, lupus AtMs displayed a dysfunctional phenotype, underwent accelerated apoptosis, poorly co-stimulated T cells and produced proinflammatory cytokines. Interestingly, lupus AtMs were in a paradoxically differentiated status with markers pro and against terminal differentiation and enriched with antinucleosome reactivity. Finally, AtMs were accumulated in the kidneys of patients with lupus nephritis and associated with disease severity.ConclusionsThese findings demonstrated that mTORC1-overactivated lupus AtMs are abnormally differentiated with metabolic and functional dysregulations. Inhibiting mTORC1 signalling might be an attractive option to target AtMs and to improve therapeutic effectiveness in patients with lupus.

Funder

National Natural Science Foundation of China

The Strategic Priority Research Program, Chinese Academy of Sciences

Publisher

BMJ

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,Immunology and Allergy,Rheumatology

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3