Lupus or not? SLE Risk Probability Index (SLERPI): a simple, clinician-friendly machine learning-based model to assist the diagnosis of systemic lupus erythematosus

Author:

Adamichou Christina,Genitsaridi Irini,Nikolopoulos DionysisORCID,Nikoloudaki Myrto,Repa Argyro,Bortoluzzi Alessandra,Fanouriakis AntonisORCID,Sidiropoulos ProdromosORCID,Boumpas Dimitrios TORCID,Bertsias George KORCID

Abstract

ObjectivesDiagnostic reasoning in systemic lupus erythematosus (SLE) is a complex process reflecting the probability of disease at a given timepoint against competing diagnoses. We applied machine learning in well-characterised patient data sets to develop an algorithm that can aid SLE diagnosis.MethodsFrom a discovery cohort of randomly selected 802 adults with SLE or control rheumatologic diseases, clinically selected panels of deconvoluted classification criteria and non-criteria features were analysed. Feature selection and model construction were done with Random Forests and Least Absolute Shrinkage and Selection Operator-logistic regression (LASSO-LR). The best model in 10-fold cross-validation was tested in a validation cohort (512 SLE, 143 disease controls).ResultsA novel LASSO-LR model had the best performance and included 14 variably weighed features with thrombocytopenia/haemolytic anaemia, malar/maculopapular rash, proteinuria, low C3 and C4, antinuclear antibodies (ANA) and immunologic disorder being the strongest SLE predictors. Our model produced SLE risk probabilities (depending on the combination of features) correlating positively with disease severity and organ damage, and allowing the unbiased classification of a validation cohort into diagnostic certainty levels (unlikely, possible, likely, definitive SLE) based on the likelihood of SLE against other diagnoses. Operating the model as binary (lupus/not-lupus), we noted excellent accuracy (94.8%) for identifying SLE, and high sensitivity for early disease (93.8%), nephritis (97.9%), neuropsychiatric (91.8%) and severe lupus requiring immunosuppressives/biologics (96.4%). This was converted into a scoring system, whereby a score >7 has 94.2% accuracy.ConclusionsWe have developed and validated an accurate, clinician-friendly algorithm based on classical disease features for early SLE diagnosis and treatment to improve patient outcomes.

Funder

H2020 European Research Council

Foundation for Research in Rheumatology

Pancretan Health Association

Hellenic Society of Rheumatology & Professionals Union of Rheumatologists of Greece

Publisher

BMJ

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,Immunology and Allergy,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3