In vivo and in vitro hepatic phosphorus-31 magnetic resonance spectroscopy and electron microscopy in chronic ductopenic rejection of human liver allografts

Author:

Taylor-Robinson S D,Sargentoni J,Bell J D,Thomas E L,Marcus C D,Changani K K,Saeed N,Hodgson H J F,Davidson B R,Burroughs A K,Rolles K,Foster C S,Cox I J

Abstract

Background—In vivo hepatic phosphorus-31 magnetic resonance spectroscopy (MRS) provides non-invasive information about phospholipid metabolism.Aims—To delineate MRS abnormalities in patients with chronic ductopenic rejection (CDR) and to characterise spectral changes by in vitro MRS and electron microscopy.Patients and methods—Sixteen liver transplant recipients (four with CDR; 12 with good graft function) and 29 controls (23 healthy volunteers; six patients with biliary duct strictures) were studied with in vivo 31P MRS. Peak area ratios of phosphomonoesters (PME) and phosphodiesters (PDE), relative to nucleotide triphosphates (NTP) were measured. In vitro MRS and electron microscopy were performed on biopsy specimens from five patients with CDR, freeze clamped at retransplantation. Phosphoethanolamine (PE), phosphocholine (PC), glycerophosphorylethanolamine (GPE), and glycerophosphorylcholine (GPC) concentrations were measured.Results—The 12 patients with good graft function displayed no spectral abnormalities in vivo; the four patients with CDR showed significantly elevated PME:NTP (p<0.01) and PDE:NTP ratios (p<0.005). Patients with biliary strictures had significant differences in PME:NTP (p<0.01) from patients with CDR, but not in mean PDE:NTP. In vitro spectra from CDR patients showed elevated PE and PC, mirroring the in vivo changes in PME, but reduced GPE and GPC concentrations were observed, at variance with the in vivo PDE findings. On electron microscopy, there was no proliferation in hepatocyte endoplasmic reticulum.Conclusions—The increase in PME:NTP reflects altered phospholipid metabolism in patients with CDR, while the increase in PDE:NTP may represent a significant contribution from bile phospholipid.

Publisher

BMJ

Subject

Gastroenterology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3