Determinants of LV dP/dtmax and QRS duration with different fusion strategies in cardiac resynchronisation therapy

Author:

Odland Hans HenrikORCID,Holm Torbjørn,Gammelsrud Lars Ove,Cornelussen Richard,Kongsgaard Erik

Abstract

BackgroundWe designed this study to assess the acute effects of different fusion strategies and left ventricular (LV) pre-excitation/post-excitation on LV dP/dtmax and QRS duration (QRSd).MethodsWe measured LV dP/dtmax and QRSd in 19 patients having cardiac resynchronisation therapy (CRT). Two groups of biventricular pacing were compared: pacing the left ventricle (LV) with FUSION with intrinsic right ventricle (RV) activation (FUSION), and pacing the LV and RV with NO FUSION with intrinsic RV activation. In the NO FUSION group, the RV was paced before the expected QRS onset. A quadripolar LV lead enabled distal, proximal and multipoint pacing (MPP). The LV was stimulated relative in time to either RV pace or QRS-onset in four pre-excitation/post-excitation classes (PCs). We analysed the interactions of two groups (FUSION/NO FUSION) with three different electrode configurations, each paced with four different degrees of LV pre-excitation (PC1–4) in a statistical model.ResultsLV dP/dtmax was higher with NO FUSION than with FUSION (769±46 mm Hg/s vs 746±46 mm Hg/s, p<0.01), while there was no difference in QRSd (NO FUSION 156±2 ms and FUSION 155±2 ms). LV dP/dtmax and QRSd increased with LV pre-excitation compared with pacing timed to QRS/RV pace-onset regardless of electrode configuration. Overall, pacing LV close to QRS-onset (FUSION) with MPP shortened QRSd the most, while LV dP/dtmax increased the most with LV pre-excitation.ConclusionWe show how a beneficial change in QRSd dissociates from the haemodynamic change in LV dP/dtmax with different biventricular pacing strategies. In this study, LV pre-excitation was the main determinant of LV dP/dtmax, while QRSd shortens with optimal resynchronisation.

Funder

Helse Sør-Øst RHF

Publisher

BMJ

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3