Cardiac MR modelling of systolic and diastolic blood pressure

Author:

Assadi HosamadinORCID,Matthews Gareth,Zhao Xiaodan,Li Rui,Alabed Samer,Grafton-Clarke Ciaran,Mehmood Zia,Kasmai Bahman,Limbachia Vaishali,Gosling Rebecca,Yashoda Gurung-Koney,Halliday Ian,Swoboda Peter,Ripley David Paul,Zhong Liang,Vassiliou Vassilios S,Swift Andrew J,Geest Rob J van der,Garg PankajORCID

Abstract

AimsBlood pressure (BP) is a crucial factor in cardiovascular health and can affect cardiac imaging assessments. However, standard outpatient cardiovascular MR (CMR) imaging procedures do not typically include BP measurements prior to image acquisition. This study proposes that brachial systolic BP (SBP) and diastolic BP (DBP) can be modelled using patient characteristics and CMR data.MethodsIn this multicentre study, 57 patients from the PREFER-CMR registry and 163 patients from other registries were used as the derivation cohort. All subjects had their brachial SBP and DBP measured using a sphygmomanometer. Multivariate linear regression analysis was applied to predict brachial BP. The model was subsequently validated in a cohort of 169 healthy individuals.ResultsAge and left ventricular ejection fraction were associated with SBP. Aortic forward flow, body surface area and left ventricular mass index were associated with DBP. When applied to the validation cohort, the correlation coefficient between CMR-derived SBP and brachial SBP was (r=0.16, 95% CI 0.011 to 0.305, p=0.03), and CMR-derived DBP and brachial DBP was (r=0.27, 95% CI 0.122 to 0.403, p=0.0004). The area under the curve (AUC) for CMR-derived SBP to predict SBP>120 mmHg was 0.59, p=0.038. Moreover, CMR-derived DBP to predict DBP>80 mmHg had an AUC of 0.64, p=0.002.ConclusionCMR-derived SBP and DBP models can estimate brachial SBP and DBP. Such models may allow efficient prospective collection, as well as retrospective estimation of BP, which should be incorporated into assessments due to its critical effect on load-dependent parameters.

Funder

Wellcome Trust

NIHR

Publisher

BMJ

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3