Two unique biological response-modifier glucans beneficially regulating gut microbiota and faecal metabolome in a non-alcoholic steatohepatitis animal model, with potential applications in human health and disease

Author:

Preethy Senthilkumar,Ikewaki Nobunao,Levy Gary A,Raghavan Kadalraja,Dedeepiya Vidyasagar Devaprasad,Yamamoto Naoki,Srinivasan Subramaniam,Ranganathan Natarajan,Iwasaki Masaru,Senthilkumar Rajappa,Abraham Samuel J KORCID

Abstract

ObjectiveThe gut microbiome and its metabolites are influenced by age and stress and reflect the metabolism and health of the immune system. We assessed the gut microbiota and faecal metabolome in a static animal model of non-alcoholic steatohepatitis (NASH).DesignThis model was subjected to the following treatments: reverse osmosis water, AFO-202, N-163, AFO-202+N-163 and telmisartan treatment. Faecal samples were collected at 6 and 9 weeks of age. The gut microbiome was analysed using 16S ribosomal RNA sequences acquired by next-generation sequencing, and the faecal metabolome was analysed using gas chromatography-mass spectrometry.ResultsGut microbial diversity increased greatly in the AFO-202+N-163 group. Postintervention, the abundance of Firmicutes decreased, whereas that of Bacteroides increased and was the highest in the AFO-202+N-163 group. The decrease in the abundance of Enterobacteriaceae and other Firmicutes and the abundance of Turicibacter and Bilophila were the highest in the AFO-202 and N-163 groups, respectively. Lactobacillus abundance was highest in the AFO-202+N-163 group. The faecal metabolite spermidine, which is beneficial against inflammation and NASH, was significantly decreased (p=0.012) in the N-163 group. Succinic acid, which is beneficial in neurodevelopmental and neurodegenerative diseases, was increased in the AFO-202 group (p=0.06). The decrease in fructose was the highest in the N-163 group (p=0.0007). Isoleucine and Leucine decreased with statistical significance (p=0.004 and 0.012, respectively), and tryptophan also decreased (p=0.99), whereas ornithine, which is beneficial against chronic immune-metabolic-inflammatory pathologies, increased in the AFO-202+N-163 group.ConclusionAFO-202 treatment in mice is beneficial against neurodevelopmental and neurodegenerative diseases, and has prophylactic potential against metabolic conditions. N-163 treatment exerts anti-inflammatory effects against organ fibrosis and neuroinflammation. In combination, these compounds exhibit anticancer activity.

Publisher

BMJ

Subject

Gastroenterology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3