Exhumation history and landscape evolution of the Sierra de San Luis (Sierras Pampeanas, Argentina) - new insights from low - temperature thermochronological data

Author:

Bense Frithjof,Costa Carlos,Oriolo Sebastián,Löbens Stefan,Dunkl Istvan,Wemmer Klaus,Siegesmund Siegfried

Abstract

This paper presents low-temperature thermochronological data and K‑Ar fault gouge ages from the Sierra de San Luis in the Eastern Sierras Pampeanas in order to constrain its low-temperature thermal evolution and exhumation history. Thermal modelling based on (U-Th)/He dating of apatite and zircon and apatite fission track dating point to the Middle Permian and the Triassic/Early Jurassic as main cooling/exhumation phases, equivalent to ca. 40-50% of the total exhumation recorded by the applied methods. Cooling rates are generally low to moderate, varying between 2-10 °C/Ma during the Permian and Triassic periods and 0.5-1.5 °C/Ma in post-Triassic times. Slow cooling and, thus, persistent residence of samples in partial retention/partial annealing temperature conditions strongly influenced obtained ages. Thermochronological data indicate no significant exhumation after Cretaceous times, suggesting that sampled rocks were already at or near surface by the Cretaceous or even before. As consequence, Cenozoic cooling rates are low, generally between 0.2-0.5 °C/Ma which is, depending on geothermal gradient used for calculation, equivalent to a total Cenozoic exhumation of 0.6-1.8 km. K-Ar fault gouge data reveal long-term brittle fault activity. Fault gouge ages constrain the end of ductile and onset of brittle deformation in the Sierra de San Luis to the Late Carboniferous/Early Permian. Youngest K-Ar illite ages of 222-172 Ma are interpreted to represent the last illite formation event, although fault activity is recorded up to the Holocene.

Publisher

Pontificia Universidad Catolica de Valparaiso

Subject

Paleontology,Stratigraphy,Geochemistry and Petrology,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3