Development of a Building Simulation Model for Indoor Temperature Prediction and HVAC System Anomaly Detection

Author:

PALAİĆ Darko1ORCID,ŠTAJDUHAR Ivan1ORCID,LJUBİC Sandi1ORCID,MATETİĆ Iva1ORCID,WOLF Igor1ORCID

Affiliation:

1. University of Rijeka Faculty of Engineering

Abstract

In order to reduce global energy consumption, energy-efficient, green and smart buildings have to be built. In addition to the application of other energy efficiency measures, an effective management of HVAC systems is required. High quality management and control of these systems ensures optimal occupant comfort levels, proper operation, rational energy consumption, and a positive impact on the environment. This is especially important for large buildings with complex systems such as hotels. As a contribution to the creation of appropriate tools for the management and control of HVAC systems in smart buildings, this paper presents the results of the current development of a detailed dynamic simulation model based on data collected from a smart room system in a hotel in Zagreb, Croatia. The smart room system, which is integrated into the hotel's building management system, provides historical data on set and current room temperatures, room occupancy schedule, window opening, fan coil operation status, fan rotation speed, valve opening, and operating mode with a time step of 5 minutes. The simulation model based on the TRNSYS software uses a part of the available data and calculates the current internal room temperatures. A comparison of the predicted and measured temperatures at each time step showed that the deviations are within the acceptable limits. The final objectives of the model development are the identification of anomalies in the operation of the HVAC system and the optimization of its operation with the aim of reducing energy consumption.

Publisher

Journal of Energy Systems

Subject

Management, Monitoring, Policy and Law,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3