Identification of Vibration for Balancing in Fehn Pollux Ship with ECO Flettner Rotor

Author:

PARMAR Chetan1ORCID,WİNGS Elmar1ORCID,NOURMOHAMMADİ Farzaneh2ORCID

Affiliation:

1. University of Applied Science Emden/Leer

2. Polytechnic University of Catalonia

Abstract

Flettner rotors are wind propulsion systems using the Magnus effect to generate thrust, thereby reduce fuel consumption and carbon emissions in the ships. However, rotor unbalance can cause excessive vibrations and energy loss, affecting the performance and stability of the system. There is a need to have a system onboard, which can predict the vibrations. The paper proposes a deep learning approach to predict the vibrations and unbalanced forces of a Flettner rotor based on the data of ECO Flettner rotor onboard the vessel MV Fehn pollux. The paper develops two methods to estimate the direction and magnitude of the unbalanced forces using the reading values of the strain gauges. The work also compares two recurrent neural network models, namely Long-short term memory and Gated Recurrent Unit, for vibration prediction and evaluates their performance using Mean Absolute Error and Root Mean Squared Error metrics. The results show that Long-short term memory model outperforms Gated Recurrent Unit model in prediction accuracy and can be implemented on the system onboard to monitor and prevent rotor unbalance. The paper also suggests some possible solutions for automatic self-balancing of the rotor and identifies some areas for future work.

Publisher

Journal of Energy Systems

Subject

Management, Monitoring, Policy and Law,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3