Effect of stator winding chording on the performance of five phase synchronous reluctance motor

Author:

UMOH Gideon1ORCID,OBE Desmond Obinna1ORCID,MAMA Benjamin2ORCID,OBE Pauline1ORCID,UGWUISHIWU Chikaodili Helen1ORCID,ENEH Hyacinth Agozie1ORCID,OBE Emeka Simon3ORCID

Affiliation:

1. UNIVERSITY OF NIGERIA, NSUKKA

2. UNIVERSITY O FNIGERIA, NSUKKA

3. BOTSWANA INTERNATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

Abstract

The effect of winding chording on five-phase synchronous reluctance motor (SRM) modelled in phase variables is presented. The stator winding configuration is shifted a pole pitch from a full-pitch configuration to a 54 degrees over-full-pitched configuration incorporating the effect of 3rd harmonic of the air-gap magneto-motive force in the inductance equations. The models are monitored on starting, synchronism, loading, faults and loss of synchronism. These are considered simultaneously with vector potential, rotor speed, air-gap flux linkage and winding current. The phase variable (analytical) models have been simulated by using MATLAB/Simulink software while ANSYS Maxwell software has been used to simulate the finite element model (FEM) of the motor for corresponding chording ranges for comparison on direct online starting (DOL). Under all conditions considered in the work, the detailed results are presented and very close similarity is observed between the analytical and the nearly ideal FEM model for all chording ranges and the similarity is enhanced with increase in chording angle.

Publisher

Journal of Energy Systems

Subject

Management, Monitoring, Policy and Law,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3